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Efficient algorithm for the forest fire model
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The Drossel-Schwabl forest fire model is one of the best studied models of nonconservative self-organized
criticality. However, using an alternative algorithm, which allows us to study the model on large statistical and
spatial scales, it has been shown to lack simple scaling. We thereby show that the considered model is not
critical. This paper presents the algorithm and its parallel implementation in detail, together with large-scale
numerical results for several observables. The algorithm can easily be adapted to related problems such as
percolation.
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I. INTRODUCTION

The assumption that self-organized criticality~SOC! @1# is
the correct framework to describe and explain the ubiquity
power laws in nature has been greatly supported by the
velopment of nonconservative models, because natural
cesses are typically dissipative. Contrary to these mod
analytical work has suggested that the deterministic par
the dynamics must be conservative in order to obtain s
invariance@2,3#. However, on a mean-field level, this is n
necessarily true@4#, which has been exemplified in an exa
solution of a model that has a forest-fire-like driving@5#.
However, as a random neighbor model, the latter lacks s
tial extension.

The Drossel-Schwabl forest fire model~DS-FFM! @6# is
one of the few spatially extended, dissipative models wh
supposedly exhibit SOC. Contrary to the Olami-Fed
Christensen stick-slip model@7#, where criticality is still dis-
puted ~for recent results, see, for example,@8–10#!, for the
DS-FFM the asymptotic divergence of several moments
its statistics, and therefore the divergence of an upper cu
can be shown rigorously. Although this might be conside
as a sign of criticality, it is far from being a sufficient proo
In equilibrium thermodynamics, ‘‘criticality’’ usually refers
to a divergent correlation length@11,12# in the two-point cor-
relation function, which is associated with a scale-invari
or power-law-like behavior. This is how the term ‘‘critica
ity’’ is to be interpreted in SOC: Observables need to be sc
invariant @52#, i.e., power laws in the statistics. There a
many examples of divergent moments without scale inv
ance, such as the overcritical branching process@13# or over-
critical percolation@14#.

Thus, there isa priori no reason to assume that the D
FFM is scale-free. However, there are many numerical s
ies that suggest this@6,15,16#; one of them, however, sug
gests the breakdown of simple scaling@17#. Since an
analytical approach is still lacking, numerical methods
required to investigate this problem. In this paper, we p
pose an alternative, very fast algorithm to simulate the D
FFM with large statistics and on large scales. The implem

*Email address: gunnar.pruessner@physics.org
†Email address: h.jensen@ic.ac.uk
1539-3755/2004/70~6!/066707~25!/$22.50 06670
f
e-
o-
ls,
of
le

a-

h
-

f
ff,
d

t

le

i-

d-

e
-
-

n-

tation of the algorithm has produced data of very hi
statistical quality. Some of the results have been already p
lished elsewhere@18#.

The structure of the paper is as follows. Section II co
tains the definition of the model together with its standa
observables and their relations. Then the algorithm is
plained in detail. The section finishes with a detailed disc
sion on the changes necessary to run the algorithm on p
lel or distributed machines. In Sec. III, results for the tw
dimensional FFM are presented and analyzed. The pa
concludes with a summary in Sec. IV.

II. METHOD AND MODEL

This section is mainly technical: After defining the mode
all relevant details of the implementation are discuss
Apart from concepts such as the change from a tree-orie
algorithm to a cluster-oriented algorithm, concrete techni
details are given, for example memory requirements a
methods for handling histograms. The section also contai
description of the performance analysis of the implemen
tion. A parallelized version of the algorithm is introduce
and discussed in the final subsection.

A. The model

A forest fire model was first proposed by Bak, Chen, a
Tang @19# and changed later by Drossel and Schwabl@6# to
what is now known asthe forest fire model~or DS-FFM as
we call it!: On a d-dimensional lattice of linear lengthL,
each site has a variable associated with it, which indica
the state of the site. This can either be ‘‘occupied’’~by a
tree!, ‘‘burning’’ ~occupied by a fire!, or ‘‘empty’’ ~ash!. In
each time step, all sites are updated in parallel accordin
the following rules: If a site is occupied and at least one of
neighbors is burning, it becomes burning in the next tim
step. If a site is occupied and none of its neighbors is bu
ing, it becomes burning with probabilityf. If a site is empty,
it becomes occupied with probabilityp. If a site is burning, it
becomes empty in the next time step with probability 1.
these probabilities become very small, they are better
scribed as rates in a Poisson-like process. From a sim
analysis, it is immediately clear@15# that the model can be
come critical only in the limitp→0 and f→0. In this limit,
©2004 The American Physical Society7-1
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G. PRUESSNER AND H. J. JENSEN PHYSICAL REVIEW E70, 066707 ~2004!
the burning process becomes instantaneous compared
other processes~see also Sec. II B 2! and can be represente
by the algorithm shown in Fig. 1.

Compared to the instantaneous burning, both of the
maining processes are slow. In Sec. II B 2 it is shown t
p@ f is required@15# for criticality, so thatf /p,1 and the
algorithm in Fig. 1 can be written as Fig. 2, which is fas
than the former, because the number of random choices
site is reduced, but equivalent otherwise.

The line ‘‘with probability p’’ makes sure that the occu
pation attempt still happens with probabilityp and the burn-
ing attempt still occurs withp f /p5 f . Of course, the line is
completely meaningless, because the alternative, which
curs with probability 12p, is no action at all. It therefore
can be omitted. Then every randomly picked empty site w
become occupied, while burning happens with the redu
probability f /p.

This rescaling of probabilities is only possible in this for
if the two processes are independent, which is the case
cause a new occupation can only occur for empty sites, w
a burning attempt operates only on occupied sites. If b
processes were to operate on the same type of site, a red
probability (11 f /p)21 would decide between the two alte
natives.

The implementation shown in Fig. 2~without the mean-
ingless line! has been used, for example, in@20,21#. How-
ever, probably for historical reasons, the model is usu
@15,17,22# implemented as shown in Fig. 3, where trees

FIG. 1. The naive, basic algorithm of the DS-FFM.

FIG. 2. A faster algorithm, doing essentially the same as the
shown in Fig. 1.
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grown in chunks ofp/ f between two lightning attempts. Al
though this means that sites become reoccupied only
chunks ofp/ f , it turns out that apart from peaks in the hi
togram of the time series of global densities of occupied s
@22#, the statistics do not depend on these details. In orde
avoid any confusion, all data for this paper have been p
duced by means of the algorithm in Fig. 3. Moreover, th
algorithm is much more suitable for parallelization~see Sec.
II E!.

B. Statistical quantities

The objects of interest in the DS-FFM are clusters form
by occupied sites: Two trees belong to the same cluste
there exists a path between them along nearest-neighbo
occupied sites. The cluster in the DS-FFM corresponds
avalanches in sandpilelike models@1#. The cluster, which is
burnt at each burning step, can be examined more closel
that various geometrical properties can be determined ei
as averages~and higher moments! or as entire distribution:
Mass~in the following, this term is used synonymously wit
size!, diameter, time to burn it, etc. The last property is bet
expressed as the maximum length for all paths parallel to
axes and fully within the given cluster, connecting the in
tially burnt tree and each tree within the same cluster. I
the maximum number of nearest-neighbor moves one ha
make to reach all sites in the same cluster, in this sens
‘‘Manhattan distance’’@23#. As trees catch fire due to neare
neighbors only, this maximum distance is the total burn
time of the entire cluster. In the definition above, the ‘‘tim
to burn’’ TM becomes a purely geometrical property of t
cluster and therefore independent of the actual impleme
tion ~see Sec. II C 4! of the burning procedure.

1. Cluster size distribution

The most prominent property of the model, however,
the size distribution of the clusters,n̄(s), which is the single-
site normalized number density of clusters of masss, i.e., the
number of clusters of sizes per unit volume. The averag
cluster size, i.e., the average size of a cluster to whic
randomly chosen occupied site belongs, is correspondin
defined as
e

FIG. 3. The traditional implementation.
7-2
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EFFICIENT ALGORITHM FOR THE FOREST . . . PHYSICAL REVIEW E 70, 066707 ~2004!
s̃5

(
s

s2n̄~s!

(
s

sn̄~s!

. ~1!

As indicated by the bar,n̄(s) denotes theexpecteddistribu-
tion, i.e., something to beestimatedfrom the observables
On average, the probability that a randomly chosen site
longs to a cluster of sizes is thensn̄(s). If nt(s) denotes the
cluster size distribution of the configuration at timet ~see
below!, then one expects

^nt~s!&5n̄~s!, ~2!

where ^ & denotes the ensemble average@as opposed to a
tilde, which denotes the average oversn̄(s;u)]. Assuming
ergodicity, one has

lim
T→`

1

T (
t51

T

At→^A& ~3!

for an arbitrary quantityAt measured at each stept of the
simulation. The limit exists for all bound observablesAt .

Regarding the timet, it is worth noting that a step in the
simulation is considered completed, i.e.,t→t11, if the ran-
domly chosen site for the lightning attempt was occupi
i.e., the attempt was successful, so thatT is the number of
burnt clusters. For sufficiently large systems, the change
the system due to growing or lightning are almost negligib
and so are the differences between averages taken ove
lightning attempts or allsuccessfullightning attempts. Also,
the distributions found directly before and directly aft
burning tend to the same expectation value for sufficien
large systems, see Sec. III A 1. It is noted only for comple
ness that in this paper the cluster size distributionnt(s) has
been measured directlyafter the burning procedure. There
fore, nt(s) does not include the cluster burnt at time stept,
just like nt11(s) does not in an implementation, where th
distribution is measuredbeforeburning.

Introducing

r̄5(
s51

sn̄~s! ~4!

as the average density of occupied sites, the expected d
bution of burnt clusters issn̄(s)/ r̄. To see this,P t

b(s) is
introduced, denoting the distribution of clusters burnt in t
tth step of the simulation. This distribution contains only o
nonzero value for eacht, namelyP t

b(s)51 for the sizes of
the cluster burnt at timet, and P t

b(s)50 for all other s.
Therefore,

(
s51

N

P t
b~s!51, ~5!

whereN is the number of sites in the system, andN5Ld,
which is also the maximum mass of a cluster. Since the
where the fire starts is picked randomly, the cluster burn
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e-

,

of
,
all

y
-

tri-

e

te
n

time stept11 is drawn randomly from the distributionnt(s)
with a probability proportional to the mass of the cluster. T
normalization of the distributionsn̄(s) is given by Eq.~4!,
so that fort large enough, the effect of the initial conditio
can be neglected,

^P t
b~s!&5sn̄~s!/ r̄. ~6!

In the stationary state the average density of trees,r̄, is re-
lated tos̃ by @15#

s̃5
12 r̄

~ f /p!r̄
. ~7!

This equation, as well as Eq.~6!, is strictly only exact if the
density of occupied sites is constant over the course of
growing phase. For very large system sizes, Eq.~7! holds
almost perfectly, as shown in Table III; however, note t
remarks in Sec. III A 1.

For a coherent pictureP t
a(s) is introduced, which is the

histogram ofall clusters, i.e.,(sP t
a(s) is the number of clus-

ters in the system at timet. According to the definition of
n̄(s), it is

^P t
a~s!&5Nn̄~s!, ~8!

and correspondingly

r t5
1

N (
s

sP t
a~s! ~9!

with ^r t&5 r̄. Since Eqs.~6! and~8! differ on the right-hand
side ~RHS! only by constants rather than by random va
ables, both distributionsP t

b(s) andP t
a(s) are estimators of

the expected distributionn̄(s). Clearly, the burnt cluster dis
tribution P t

b(s) is much sparser thanP t
a(s), and the estima-

tor for n̄(s) derived from this quantity is therefore expecte
to have a significantly larger standard deviation. On the ot
hand, its autocorrelation time is expected to be considera
smaller than that ofP t

a(s), because on average onlyp/ f
11 entries (r̄p/ f sites are occupied in each ‘‘growing loop,
which is repeated on average 1/r̄ times! of the latter are
changed between two subsequent measurements, c
sponding to the number of newly occupied sites plus
cluster which is burnt down. So,P t

a(s) provides a much
larger sample size, but is also expected to be much m
correlated. In order to judge whether it is wise to spend C
time on calculating the fullP t

a(s) rather than onlyP t
b(s), as

was done in the past@15#, these competing effects need to b
considered by calculating the estimate for the standard
viation of the estimator ofn̄(s) from both observables
which is discussed in detail in Sec. II D.

2. Time scales

In order to obtain critical behavior in the FFM, a doub
separation of time scales is required@24#,

f !p!S f

pD n8
, ~10!
7-3
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G. PRUESSNER AND H. J. JENSEN PHYSICAL REVIEW E70, 066707 ~2004!
with some positive exponentn8. The left relation,f !p, en-
tails f /p→0 and therefore~10! entailsp→0 andf→0. This
is also the case for

f !p!1, ~11!

and therefore leads to the same prescription to drive the
tem, however~10! entails~11! but not vice versa. This can b
seen by noting that~10! entails the nontrivial relation
p111/n8! f !p. Some authors, however, just state~11!
@4,17#. The three scales involved are due to three differ
processes and their corresponding rates.

~i! The time scale on which the burning happens, the ty
cal time of which is handwavingly estimated as the aver
number of sites in a burnt cluster,s̃}p/ f . A more appropriate
assumption is that the typical burning time scales like
powern of the average cluster size@24#. This should be dis-
tinguished from the scaling of theaveragetime it takes to
burn a cluster, because thetypical time represents the cha
acteristic scale of the burning time distribution, which mig
be very different from its average.

~ii ! The time scale of the growing, which is 1/p.
~iii ! The time scale of the lightning, 1/f .
Burning must be fast compared to growing, so that cl

ters are burnt down before new trees grow on the edges@24#,
i.e., (p/ f )n8!1/p or ( f /p)n8@p. In order to obtain diver-
gent cluster sizes, growing must be much faster than lig
ning, i.e.,p@ f . Thus, the double separation reads as sta
in ~10!. By making the burning instantaneous compared
all other processes, the dynamics effectively loses one t
scale. In this case, the ratesf andp, measured on this micro
scopic time scale, vanish, i.e.,f 50 and p50, so that the
right relation of~10! is perfectly met, provided thatp/ f does
not vanish. However, the ratiof /p remains finite andf !p is
still to be fulfilled. A finite f /p means that one rate provide
a scale for the other. Measuring the rates on the macrosc
time scale, defined by the sequence of burning attempf
becomes 1 in these new unities andp becomesp/ f [u21.
The notationu5 f /p corresponds to@4#, which is, unfortu-
nately, the inverse ofu used in @17#. Equation ~10! then
meansu→0. At first sight, this result seems paradoxic
since u50 is incompatible with instantaneous burning
compliance withp!un8 . However, this problem does no
appear in thelimit u→0. In a finite system, one cannot mak
u arbitrarily small, as the system will asymptotically oscilla
between the two states of being completely filled and co
pletely empty. On the other hand, for fixedu and sufficiently
large system sizes, a further increase in system size
leave the main observables, such asr t and P a ~see Sec.
II B 1!, essentially unchanged. These asymptotic valu
namely the observables at a givenu in the thermodynamic
limit, are to be measured.

3. Scaling of the cluster size distribution

Assuming that finite-size effects do not play any role, i.
for u not too small, the ansatz

n̄~s;u!5s2tG„s/s0~u!… ~12!
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as obtained in percolation@14# is reasonable fors larger than
a fixed lower cutoff. In the following, the additional param
eteru in n̄(s;u) is omitted, whenever possible. The quant
s0(u) is the upper cutoff and is supposed to incorporate au
dependence of the distribution. It can be shown easily@15#
that the second moment ofn̄(s;u) @see Eq.~1!# diverges in
the limit u→0 andL→`, so thats0 must diverge withu
→0. Here,G(x) plays the role of a cutoff function, so tha
limx→`G(x)50 and falls off faster than any power ofx for
largex, because all moments ofn̄(s;u) are finite in a finite
system. For finitex, G(x) can show any structure and doe
not have to be constant. However, assuming lims0→`n̄(s;u)

finite, G(s/s0) can be regarded as constant ins for suffi-
ciently larges0 , so thatn̄(s;u) behaves like a power law
s2t, for certain s. However,a priori it is completely un-
known whethers0 is large enough in that sense, and theonly
way to determinet directly from n̄(s;u) is via data collapse.
It is already known that ‘‘simple scaling’’~12! does not apply
in the presence of finite-size effects@22#.

The assumption~12! states that the FFM is scale-free
the limit s0(u)→` and definesthe exponentt which char-
acterizes the scale invariance. One cannot stress enough
with the breakdown of Eq.~12!, the proposed exponent i
undefined, unless a new scaling behavior is proposed. It
been pointed out that Eq.~12! certainly contains correction
@25#. This asymptotic character of the universal scaling fun
tion is well known@26# from equilibrium critical phenomena

While Grassberger concludes that the ansatz~12! ‘‘cannot
be correct’’@17#, this is rejected in@22#. However, the latter
authors do not actually investigateG(x) and simply plot their
estimate ofsn̄(s;u) versuss/s0(u). In the results section, i
is shown that there is no reason to believe that Eq.~12! could
hold in any finite system.

4. Other distributions

The exponentt as defined in Eq.~12! can be related to
exponents of other assumed power laws. To this end,
distribution P(s,TM ;u) is introduced, which is the joint
probability density function~PDF! for a cluster burnt to be of
masss and burning time~see Sec. II B! TM at givenu. Then
it is possible to define conditional expectation values as@27#

E~suTM ;u!5(
s8

s8P~s8,TM ;u!, ~13!

E~TMus;u!5(
TM8

TM8 P~s,TM8 ;u!. ~14!

Moreover, it is clear thatn̄(s;u) is just a marginal distribu-
tion, i.e.,

sn̄~s;u!5(
TM8

P~s,TM8 ;u![Ps~s;u!. ~15!

In the assumed absence of any scale, it is reasonable to
fine for the distribution ofTM similar to Eq.~12!,

PTM
~TM ;u!5TM

2bGTM
„TM /TM0

~u!… ~16!
7-4
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EFFICIENT ALGORITHM FOR THE FOREST . . . PHYSICAL REVIEW E 70, 066707 ~2004!
and for the relation betweenE(suTM) andTM ,

E~suTM !}TM
m8 . ~17!

To avoid confusion, it is important to keep in mind that t
absence of scales is not a physical or mathematical neces
The system could as well ‘‘self-organize’’ to any other, su
ficiently broad, distribution that could have an intrinsic, fin
scale, i.e., a natural constant characterizing the feature
the distribution. This looks much less surprising consider
the fact that standard models of critical phenomena@12#,
such as the Ising model, possess such a scale everyw
apart from the critical point.

An additional assumption is necessary in order to prod
a scaling relation,

PTM
~TM ;u!dTM5Ps„E~suTM !;u…d„E~suTM ;u!…, ~18!

where PTM
and Ps denote the marginal distributions o

P(s,TM ;u), which leads—assuming sufficiently larges0 and
TM0

—to

b511m8~t22! ~19!

using Ps5sn̄(s;u) and Eq.~12!. Equation~18! is based on
the idea that a cluster requiring burning timeTM is as likely
to occur as a cluster of the size corresponding to the ave
taken conditional to the burning timeTM . If the distribution
P(s,TM ;u) is very narrow, such thatE(suTM) is virtually the
only value ofs with nonvanishing probability@53#, this con-
dition is met. However, the distribution can have any sha
and still obey the assumption, as illustrated in Fig. 4.

Scaling relation~19! can only be derived via Eq.~18!,
which cannot be mathematically correct, asPs is actually
only defined for integer arguments, while in generalE(suTM)
is not integer valued. However, the scaling relation mig
hold in some limit.

The exponent defining the divergence ofs0 in Eq. ~12! is
defined as

s0~u!5u2l, ~20!

leading together with Eqs.~1! and~7! to the scaling relation
@24#

l~32t!51. ~21!

The corresponding exponent forTM0
in Eq. ~16! is

TM0
~u!5u2n8. ~22!

The assumptionTM0
5E(TMus0)}s0

1/m8 then gives the scal
ing relation

n85
l

m8
. ~23!

It is interesting to note that this assumption is consistent w
the assumption that clusters that have a size of the o
06670
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s0(u) need of the orderTM0
time to burn. In that case, on

hasPTM
(TM0

;u)dTM5Ps(s0 ;u)ds, and asTM0
}s0

n8/l , one
has using Eqs.~16! and ~12!

~12b!
n8

l
522t ~24!

corresponding to Eq.~19! with Eq. ~23!.

C. The implementation

In this section, a new implementation of the DS-FFM
discussed. An implementation especially capable of hand
large scales has been proposed by Honecker@28# earlier. Its
most prominent feature is the bitwise encoding of the mod
which significantly reduces memory requirements. Some
the properties investigated profit from this scheme of bitw
encoding, because bitwise logical operators can be use
determine, for example, correlations and operate on en
words ‘‘in parallel.’’ However, in this implementation i
would have been inefficient to count all clusters, i.e.,n̄(s) is
determined viaP b(s) rather thanP a(s).

In contrast to standard implementations@15,20,22#, where
n̄(s) is derived fromP b(s), the philosophy of the imple-
mentation presented in this paper is to countall clusters ef-
ficiently by keeping track of their growing and disappea
ance, so thatn̄(s) is derived fromP a(s). By comparing the
standard deviation of the estimates, and the costs~CPU
time!, the efficiency is found to be at least one order
magnitude higher. At the same time, the complexity of t
algorithm is essentially unchanged, namelyO„u21 log(N)…
instead ofO(u21), while a naive implementation of the
counting of all clusters is typically of orderO(N). In the
following, the algorithm is described in detail. Because of

FIG. 4. A schematic joint PDFP(s,TM8 ;u). The gray shading is
used to indicate the density and the straight lines indicate roug
the limits of the distribution. While a narrower distribution wou
most easily obey Eq.~18!, it does not necessarily have to be sharp
peaked. In this example, the weighted areas of the horizontal
the vertical stripes might be the same. They cross at the conditi
averages.
7-5
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G. PRUESSNER AND H. J. JENSEN PHYSICAL REVIEW E70, 066707 ~2004!
close relation to standard percolation, the algorithm p
sented below is also applicable for this classical problem
statistical mechanics. In fact, the percolation algorithm
cently proposed by Newman and Ziff@29,30# is very similar.
Based on many principles presented in this paper, an a
chronously parallelized version for percolation has been
veloped recently@31#.

1. Tracking clusters

Usually each site is represented by a two-state varia
which indicates whether the site is occupied or empty. T
variable does not need to indicate the state ‘‘burning,’’ b
cause the burning procedure is instantaneous compared
other processes and can be implemented without introdu
a third state~see Sec. II C 4!. In order to keep track of the
cluster distribution, each site gets associated two further v
ables~in an actual implementation, the number of variab
can be reduced to one, see Sec. II C 2!, one which points
~depending on the programming language either directly
an address or as an index! to its ‘‘representative’’ and one
which contains the mass of the cluster to which the given
is connected. The representative of a site is another sit
the same cluster, but not necessarily and in fact typically
a nearest neighbor. This is shown in Fig. 5. If a site is em
the pointer to a representative is meaningless. The pointe
representatives forms a treelike structure, because repre
tatives might point to another representative, as shown
Fig. 6. A site which points to itself and is therefore its ow
representative is called a ‘‘root’’ site, since it forms the ro
of the treelike structure. Only at a root site is the seco
variable, denoting the mass of the cluster, actually mean
ful and indicates the mass of the entire cluster. Each clust
therefore uniquely identified by its root site: Any two sit
that belong to the same cluster have the same root and
versa. By construction of the clusters~shown below!, it takes
less thanO(logN) to find the root of any site in the system

The algorithm is a dynamically updated form of th
Hoshen-Kopelman algorithm@32#. The same technique ha

FIG. 5. All occupied sites~black! on the lattice point to a rep
resentative. The site pointing to itself is the root of the cluster. T
site shown in light gray is the one which is about to become oc
pied, as shown in Fig. 7. The labels on the sites are just to uniq
identify them in other figures.
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recently been used to simulate percolation efficiently
many different occupations densities@29#. The method de-
scribed in the following differs from@29# by not only grow-
ing clusters but also by removing them. While one of t
main advantages of the original Hoshen-Kopelman algorit
is its strong reduction of memory requirements toO(Ld21),
the algorithm described here only makes use of the data
resentation proposed by Hoshen and Kopelman, so tha
memory requirements are stillO(Ld).

In the following, the technique of how to create and
update the clusters is described in detail.

Starting from an empty lattice, the first site becomes
cupied by setting the state variable. Since this site canno
a member of a larger cluster, its representative is the
itself. Therefore, the mass variable must be set to 1. T
same pattern applies to all other sites that get occupied
long as they are isolated. The procedure becomes more
volved when a site induces a merging of clusters. This is
case whenever one or more neighbors of the newly occu
site are already occupied. In general, the procedure is the
follows: ~i! Find the root of all neighboring clusters;~ii !
reject all roots that appear more than once in order to av
double counting;~iii ! identify the largest neighboring cluste
~iv! increase the mass variable of the root of this cluster
the mass of all remaining clusters~ignoring those which have
been rejected above! plus one~for the newly occupied site!;
~v! bend the representative pointers of the roots of all
maining clusters to point to the root of the largest clus
~this keeps the tree height small, see below!; and ~vi! bend
the representative pointers of the newly occupied site
point to the root of the largest cluster.

This procedure is depicted in Fig. 7, illustrating the joi
ing of the clusters shown in Fig. 5. As an optimization, o
could also bend the pointer of site 6 to point to site 3, wh
would effectively be a form of path compression. Howev
as shown below, the trees generated have only logarith
height, so that the path compression possibly costs m
CPU time than it saves for system sizes reachable with
rent computers@54#. It is important to note that only the roo
of the largest cluster is not redirected.

To find the root of a given site, which is necessary whe
ever clusters are considered for merging, an algorithm
the one shown in Fig. 8 needsO(hm„M (C)…) time ~worst
case!, wherehm„M (C)… is the maximum height of a cluste

e
-
ly

FIG. 6. The treelike structure of the largest cluster in Fig. 5.
7-6
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EFFICIENT ALGORITHM FOR THE FOREST . . . PHYSICAL REVIEW E 70, 066707 ~2004!
containingM (C) sites,C being the cluster under conside
ation.

All clusters are constructed by merging clusters, wh
might often involve single sites. These clusters are rep
sented as trees, like the one shown in Fig. 6. In the follo

FIG. 7. The configuration in Fig. 5 after occupying the hig
lighted site. Sites, the pointer of which have been changed,
shown in dark gray~sites 7 and 9!.
-

06670
h
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ing, this representation is used. By construction, if at le
two trees join, the resulting tree has either the height of
tree representing the largest cluster or the height of any
the smaller trees plus one—whichever is larger. Thus,
construction,

hm~M !>hm~M 8! for any M>M 8, ~25!

so in order to find the maximum height of a tree of massM,
one has to consider the worst case when the smaller t
have maximum height. For a given fixedM, this is the case
when only two clusters merge, so

re

FIG. 8. The find–root algorithm. All sites are expected to have
pointer to their representative in the array pointer–of. The result of
this procedure is index.
the
hm~M !<max„max@hm~M2M 8!u0<M 8< bM /2c#, max@11hm~M 8!u0<M 8< bM /2c#…, ~26!

wherebM /2c denotes the integer part ofM /2>0, which is the maximum size of the smaller cluster. The outer max picks
maximum of the two max running over all allowed sizes of the smaller cluster. Using~25!,

hm~M !<max„hm~M21!,11hm~ bM /2c !… ~27!

so that

hm~M !<H 11hm~ bM /2c ! for 11hm~ bM /2c !>hm~M21!

hm~M21! otherwise.
~28!
ay
ns
m-
ed
art

ning

for
,
i-
With hm(1)51, one can see immediately that

hm~M !< d log2~M !e ~29!

by induction, noting thatd log2(M/2)e5 d log2(M)e21, where
dae[ bac11 for anya>0. Hence,

hm~M !PO„log~M !…, ~30!

which is therefore the~worst case! complexity of the algo-
rithm. It is worthwhile noting that all the algorithms consid
ered are just one solution of the more general union-find~and
also insert! problem@33#.
As the tree constructed is directed, there is no simple w
to find all sites which are pointing to a given site. This mea
that splitting trees is extremely expensive in terms of co
plexity. However, in the DS-FFM, trees do not get remov
individually, but always as complete clusters. Thus, no p
of the tree structure needs to be updated during the bur
~see Sec. II C 4!.

2. Reducing memory requirements

The three variables~state, pointer, size! mentioned above
would require a huge amount of memory: At least a bit
the state~but for convenience a byte!, a word for the address
and a word for the mass~actually depending on the max
7-7
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G. PRUESSNER AND H. J. JENSEN PHYSICAL REVIEW E70, 066707 ~2004!
mum size of the clusters!. However, as the pointers are on
meaningful if the site is occupied, the representative poin
can also be used to indicate the state of a site: If it is 0~or
NULL if it is an address!, the site is empty and occupie
otherwise.

As mentioned above~Sec. II C 1!, the mass variable is
meaningful only at a root site. Since only a certain range
pointers is meaningful, the remaining range can be use
indicate the mass of a cluster. Assuming that indeces
only be positive, negative numbers for the value of t
pointer can be interpreted as self-references and their m
lus as total mass of the cluster. The concept is restricte
system sizes that are small enough that the space not o
pied by meaningful pointers is large enough to store the m
information. How large is the maximum representable s
tem size ~not to be confused with memory requiremen
which is N times word size!? For a word size ofb54 byte,
i.e., M528b representable values in a word, the maximu
system size isN523121, namely21¯2N values for in-
dicating masses, 1̄ N for indices, and 0 for the empty site
summing up to 2N11<M , which is overruled by the
memory required,bN<M , as M is ~usually! the maximal
addressable memory for a single process.

When using addresses as pointers, it is less obvious
to identify the range of meaningless pointers which could
used to store the mass information. In order to distingu
quickly whether a given value is an address or a mass,
most obvious way is to use higher bits in the pointers. W
is the range of meaningless addresses? The addresse
words, occupyingbN bytes. If each byte is individually ad
dressable~as usual!, their value differs byb, i.e., they span a
range ofbN different values. As shown in Fig. 9, the large
remaining continuous chunk of values, not used for re
ences to representatives, has therefore at least sized(M
2bN)/2e5(M2bN)/2, assuming that the pointer value
used, which is also the range of addresses where they
stored, spans a continuous range. If theN11 different clus-
ter masses are to be represented as pointer values poi
into the meaningless region, one has 11N<(M2bN)/2,
i.e., (b12)N12<M . If they do not have to be continuou
the condition is relaxed: 11N<M2bN. Alternatively one
can make use of the lower bits: If the pointers point to wo
in a continuous chunk of memory or at least are all aligned
the same way, then all pointers are identical~modb!, i.e., all
pointersp obeyp5c ~modb!, where 0<c,b is a constant.
Since b.1, one can usepÞc ~mod b! to indicate that a
given pointer value is to be interpreted as mass, which
easily be calculated via a bit-shift.

FIG. 9. The memory layout when using addresses as pointe
representative. The hatched area is used for valid addresses;
remains can be used to represent cluster masses, i.e., if the va
an address points into the white area, the value is interpreted
mass.
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In C it is reasonable to represent the sites as void* and
interpret these as pointers to other sites, i.e., void** , so that
the loop to search for a root just becomes the code show
Fig. 10.

Representing each site by a word instead of a byte or e
a bit @28# still leads to reasonably small memory requir
ments for typical system sizes~for instance, a system of siz
N5409634096 would require 64 megabytes!. Since the al-
gorithm has an almost random memory access pattern,
not reasonable to implement it out of core@34#. In order to
simulate even larger sizes, the following representation
been implemented: At the beginning of the simulation, t
entire lattice is splitted in cells so that whatever site in su
a cell is occupied, it must belong to the same cluster as
other occupied site in the same cell, i.e., each site in the
is the nearest neighbor of all other sites in the cell. On
hypercubic lattice these cells have size 2, as depicted in
11. Each site within such a cell must belong to the sa
cluster if it is occupied. Therefore, only one pointer is ne
essary to refer to its representative. On a triangular latt
these cells would have size 3. Since a pointer can be n

to
hat
of

s a

FIG. 10. An implementation offind_root in C using pointers
to void .

FIG. 11. If occupied, each site within a dashed box belongs
the same cluster. On a triangular lattice the dashed patches wou
triangular, each one containing three sites. The thick dashed
shows the orientation of the boundary between two consecu
slices in the parallelized code, see Sec. II E.
7-8
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null, although not all sites in the cell are occupied, a n
variable must represent the state of the sites in each ce
not lower or higher order bits of the pointers can be used~see
above!. On the hypercubic lattice, the memory requireme
is therefore for each pair of sites 2 bit for the state and
word for the address or index of the representative. Sto
the 2 bits in a byte~and keeping the remaining 6 bits un
used!, the memory requirements are therefore reduced
(b11)N/2 bytes. Using indices, the maximum representa
system size is given by 3/2N11<M , and using pointers
with a size identification as shown in Fig. 9, the constrain
11N<@M2(bN/2)#/2 in the worst case.

3. Efficient histogram superposition

So far, only the maintenance of the cluster structure
been described. Since the masses of all clusters involved
known, it is simple to maintain a histogram of the clus
mass distribution: If a cluster of sizes is burnt, the corre-
sponding entry inP t

a(s) is decreased by one. If a cluste
changes size,P t

a(s) is updated accordingly. For exampl
when two clusters of sizes1 ands2 merge as a particular sit
is newly occupied during the growing procedure,P t

a(s1) and
P t

a(s2) are decreased by one andP t
a(s11s211) is in-

creased by one.
Naively, the average cluster size distribution is the av

age ofP t
a(s), i.e.,

1

T (
t851

t

P t8
a

~s!, ~31!

with T the number of iterations. Depending on the resolut
of the histogram, it would be very time consuming to calc
late this sum for eachs. Using exponential binning~which is
in fact a form of hashing! in order to reduce the size of th
histogram solves the problem only partly.

Ignoring any hashing, a naive superposition, where e
slot in the histogram needs to be read, has comple
O(TH), whereH is the largest cluster mass in the histogra

This problem is solved by noting that early changes in
histogram propagate though the entire sequence of h
grams. Denoting the initial histogram asP 0

a(s) and
DP t

a(s)5P t21
a (s)2P t

a(s), then

P t
a~s!5P 0

a~s!1 (
t851

t

DP t8
a

~s!, ~32!

and therefore

(
t51

T

P t
a~s!5TP 0

a~s!1 (
t851

T

~T2t811!DP t8
a

~s!. ~33!

By using this identity, only the right-hand side of Eq.~33! is
maintained by increasing it byT2t11 when a new cluste
is created at timet and by decreasing it by the same amou
when it is destroyed. In this way, the complexity is only
order O@T(u2111)#, according to the number of cluste
created and destroyed, i.e., the number of changes in
distribution. This concept only becomes problematic if flo
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ing point numbers are used to store the histogram and
accuracy is so small that changes in the sum by 1 do
change the result anymore@55#. The maximum value in
P t

a(s), where this does not happen, is given by the largesm
with m11Þm, wherem is a variable of the same type a
P t

a(s). For floating point number, the value ofm is related to
the constant DBL–EPSILON ~or FLT–EPSILON for single
precision!, which essentially characterizes the length of t
mantissa. The concrete value ofm is actually platform-
precision-, and type-dependent. For an unsigned intege
size 4, this value would be (23221)21, corresponding
to ULONG–MAX 21; for double precision IEEE75
floating point numbers, this value is
FLT–RADIX** DBL–MANT –DIG21, i.e., 25321.

Provided that the right-hand side of Eq.~33! is below the
thresholdm discussed above for alls, this means that only a
single histogram needs to be maintained. It is initialized w
TP 0

a(s) and updated with6(T2t11) at time stept, when a
cluster of sizes appears or disappears. It is worth mentionin
that this concept obviously even works in conjunction wi
binning ~or any other hashing!.

4. Implementation of the burning procedure

The burning procedure was implemented in the obvio
way, without making use of the tree structure, as shown
Fig. 12. Although the burning procedure could also be imp
mented explicitly recursively, it is of course significantl
faster when implemented iteratively. The usage of a stack
the procedure might be thought of as reminiscent of the

FIG. 12. The burning procedure starting at rn. In an actu
implementation, the copying of next –stack to
current –stack can easily be omitted by repeating the cod
above with current –stack and next –stack interchanged,
similar to a red-black approach@34#.
7-9
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derlying recursive structure. The number of times the ou
loop in Fig. 12 runs defines the generation of the fire fro
and givesTM ; other properties of the burnt cluster can
extracted accordingly. The most important resource requ
by this procedure is the stacks: one for the currently burn
sites and one for the sites to be burnt in the next step. Th
is no upper limit known for the number of simultaneous
burning sites, apart from the naiveN/2 on a hypercubic lat-
tice, which comes from the observation that sites which
long to the same generation of the fire must reside on
same sublattice~even or odd!.

On the other hand, it is also trivial to find the maxim
number of sites which burn at the same time, if the fire sta
in a completely dense forest, i.e., in a lattice withr51.
Obviously the size of thetth generation is then given b
4(t21) for t.1 and 1 at the beginning,t51. Since the sum
of these numbers is the number of sites reachable with
certain timet, the sumis also an upper limit for the numbe
of simultaneously burning sites. Indeed, the actual num
can easily be larger than 4(t21), caused by arrangements
wholes in the lattice, which delay the fire spreading at cert
sites so that they burn together with a larger fire front. Su
a construction is shown in Fig. 13.

Of course it is neither reasonable nor practically poss
to provide enough memory for the theoretical worst ca
i.e., two stacks each of sizeN/2. Indeed the typical memory
requirements seem to be of orderO(Au21), as shown in
Table I, wheref max denotes the largest fire front observ
during the simulation. Providing stacks only of size 4L
turned out to be a failsafe, yet pragmatic, solution. Forma
one could implement a slow out-of-core algorithm in the ra
yet possible case in which the memory for the stack is ins

FIG. 13. The burning order for a 636 patch of sites, where
seven sites are not occupied and form a barrier, such that some
behind it burn later, together with the fire front propagating aw
from the starting point of the fire at the lower left-hand corner. T
sites belonging to the largest set of trees burning at the same
are shown in light gray, unoccupied sites are shown in white, oc
pied sites in black. The numbers indicate the generation of the
which is one plus the Manhattan distance from the starting poin
the fire along occupied sites.-
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ficient, i.e., use hard-disk space to maintain it. In fact, this
what de factohappens if one uses a stack of sizeN/2 on a
virtual memory system.

5. Complexity of the algorithm

The overall complexity of the algorithm has two contr
butions: The ‘‘growing’’ part, where new clusters are gen
ated from existing ones, and the ‘‘burning’’ part. The tim
needed for the burning part is proportional to the number
sites burnt and therefore expected asO( s̃) @see Eqs.~1! and
~7!# andO(N) in the worst case. Sincer̃ in Eq. ~7! is bound,
the complexity of ‘‘burning’’ is O(u21) ~expected!. The
complexity of ‘‘growing’’ is estimated by the average num
ber of sites newly occupied,u21, times the worst-case com
plexity ~30! to find the root of any given site, because up
four roots need to be found at each tree growing. Accord
to Eq.~30!, the worst-case complexity to find the root of an
given site isO„ log(N)…, leading to an overall complexity fo
‘‘growing’’ of O„ log(N)u21

….O(u21). In practice, the loga-
rithmic correction is negligible, especially since log(N) is an

ites
y

e
u-
e,
f

TABLE I. Performance data for different parameters and setu
‘‘ap3000,2’’ denotes a parallel run on two nodes on an AP30
accordingly ‘‘ap3000,4’’. ‘‘cluster,10’’ denotes a cluster of 25 Int
machines, connected via an old 10 MBit network, ‘‘cluster,10
denotes the same cluster on a 100 MBit network. ‘‘single1’’ a
‘‘single2’’ denote two different types of single nodes. The large
fire front f max was only measured on these systems. The quantiz
is the ratio of the average time~real time on the parallel systems i
order to include communication overhead, user time on sin
nodes! for one successful update during statistics, i.e., when all d
structures need to be maintained, and equilibration~transient!, i.e.,
when the standard representation is used.

System L u21 z f max

ap3000,2 8000 4000 1.51
ap3000,2 8000 8000 1.52
ap3000,4 16 000 4000 1.34
ap3000,4 16 000 8000 1.48
ap3000,4 16 000 16 000 1.37
ap3000,4 16 000 32 000 1.41
cluster,10 32 000 4000 2.71
cluster,10 32 000 64 000 3.81
cluster,100 32 000 32 000 1.76
single1 1000 500 1.41 216
single1 2000 1000 1.41 326
single1 4000 125 1.42 106
single1 4000 250 1.47 172
single1 4000 500 1.48 255
single1 4000 1000 1.53 317
single1 4000 2000 1.50 518
single1 4000 4000 1.57 646
single1 4000 8000 1.48 907
single1 4000 16 000 1.45 132
single2 8000 4000 2.11 687
single2 8000 8000 2.11 912
single2 8000 16 000 2.09 141
7-10
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extreme overestimate of the average case and therefor
sentially the same runtime behavior is expected for both p
cedures@30#. Implementations like the one in@28# avoid this
logarithmic factor by counting only the burnt cluster a
therefore arrive at an overall complexity ofO(u21).

The algorithm presented has therefore only a negligi
higher computational complexity compared to implemen
tions which measure onlyP b. This is corroborated by the
comparison of the CPU time per burnt cluster during equ
bration, i.e., the transient, when the cluster structure does
need to be maintained and the algorithm used is the stan
implementation, to the CPU time per burnt cluster duri
statistics, i.e., when observables are actually measured
especiallyP a is produced. This ratio is shown asz in Tables
I and II. It varies only slightly withL or u21.

Apparently the algorithm presented offers more statist
however it suffers from one limitation: It requires aboutb
11)N/2 bytes of memory~see Sec. II C 2!, compared toN/8
bytes in bitwise implementations like@28#, i.e., typically a
factor 20 more. In order to ascertain whether this disadv
tage is acceptable with respect to the statistical gain, one
to determine the standard deviations of the calculated qu
tities for both implementations.

D. Calculating the standard deviation

In order to compare the two algorithm rigorously, it
necessary to estimate the standard deviation of the estim
for n̄(s) produced by them@35,36#,

sP b
2

~s!5
2tP b11

T21
@^P t

b~s!2&2^P t
b~s!&2#,

sP a
2

~s!5
2tP a11

T21
@^P t

a~s!2&2^P t
a~s!&2#. ~34!

HeretP b andtP a are the correlation times of the two qua
tities. Calculating the correlation time in the standard fash
by recording the historyP t

a(s) andP t
b(s) for eachs would

mean storing millions of floating point numbers. Therefore
was decided to restrict these calculations to just a small
representative set ofs values. The result shows that the sta
dard deviation does not fluctuate strongly ins.

Because of the special form ofP t
b(s)P0,1, its variance is

particularly simple,

^P t
b~s!2&5^P t

b~s!& ~35!

so that

sP b
2

~s!5
2tP b11

T21
^P t

b~s!&@12^P t
b~s!&#. ~36!

The correlation time ofP t
b(s) is expected to be extremel

small, not only on physical grounds—a cluster can only b
down once—but also because of the extreme dilution
P t

b(s), as was described in Sec. II B 1. For fixeds, most of
theP t

b(s) are 0. In contrast, theP t
a(s) are expected to hav
06670
es-
-

y
-

-
ot
rd

nd

s,

n-
as
n-

ors

n

t
et
-

n
f

a large correlation time, because ‘‘only’’u2111 entries are
changed between two subsequent histograms.

The correlation function is calculated in the symmet
way as proposed in@37#, here for an arbritrary quantityAt ,

f t8
AA

5
^AtAt1t8&T2t82^At&T2t8^At1t8&T2t8

^At
2&T2^At&T

2 , ~37!

where ^ &T2t8 denotes the average taken over timet from
t51 to t5T2t8. The quantity F t8

AA was fitted to
exp(2t/tA) in order to find the correlation timetA . The re-
sults are given in Table II.

As described in Eqs.~6! and ~8!, the two estimators for
n̄(s) differ slightly. However, except forn̄(s), only constant
values appear on the RHS of Eqs.~6! and ~8!, so that the
relative errors of̂ P t

b(s)&T and^P t
a(s)&T are also the relative

errors of the estimators forn̄(s) derived from them. These
relative errors are shown in Table II as well. Their ratio
given asa and is an indicator for the advantage of the alg
rithm proposed. If the relative error is to be improved by
factor q, one needs to investq2 CPU time, i.e., if the algo-
rithm proposed in this paper costs a factorz more CPU time,
and the gain in the relative errora, the total gain isa2/z.
The values for this quantity are also given in Table II.

According to the table, for fixedu, relative errors and the
correlation times are only weakly affected by an increase
system size. At first sight, this is counterintuitive, as t
number of passes@20,21#, i.e., the mean number of times
site has been visited between two lightnings, decreases
versely proportional to the total number of sites in the s
tem: 1/(ur̄L2), see Sec. III B. Assuming that this number
essentially responsible for the error suggests keeping
number of passes constant among differentL. However, this
is apparently not the case, possibly because of self-avera
@38# effects.

The table also shows various tendencies, which are w
mentioning. First of all, the total gain becomes smaller
larger avalanche sizes. TheB in front of some of the values
indicates that a bin around thes value was investigated, i.e
the time series of

(
s8PB

P a,b~s8! ~38!

was considered, whereB is a set of~consecutive! s values,
representing the bin. For larger values ofs, these sets ge
exponentially larger, which is necessary for a reasona
large number of events as a basis for the estimators.
general tendency that the proposed algorithm is even m
efficient at smalls is not surprising:P b samples fromsn̄(s),
while P a samples only fromn̄(s), i.e., P b ‘‘sees’’ larger
cluster more often.NeverthelessP a is still advantageous by
roughly a factor5. The empty entries in Table II are due
numerical inaccuracies or simply missing simulations
certain parameters. Some entries are estimated and ma
as such.

There is an additional correlation not mentioned so f
The individual points in the estimator of the distributionP a

are not independent. There are ‘‘horizontal correlations,’’ i.
7-11
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TABLE II. Correlation timestb andta of the corresponding observablesP b andP a as a function ofs
and for different parametersL, u21. Values ofs marked by ‘‘B’’ are results for bins around thes value
indicated. For each set of parameters, the quantityz is given. It denotes the ratio between the average C
time for one successful update during equilibration~transient! and during statistics, see also Table I. The tw

fractionsAsP b
2 (s)/^P t

b(s)&,AsP a
2 (s)/^P t

a(s)& their ratio a and a2/z are derived. A* marks cases where

tb(s)50 has been assumed. A† marks values ofta(s), which have been extrapolated fromta(s) for
smallers.

L u21 z s tb(s) ta(s)

AsP b
2

~s!

^P t
b~s!&

AsP a
2

~s!

^P t
a~s!& a a2/z

4000 4000 1.57 10 0.0138*
100 0.170 23.6 0.0637 0.000 99 64.3 2633.

B 103 0.028 14.2 0.0450 0.001 91 23.6 354.8
B 104 0.006 10.0 0.0412 0.004 70 8.8 49.3
B 105 7.2 0.0662* 0.021 04 3.1 6.1

4000 16 000 1.45 10 0.013 39.9 0.0141 0.000 56 25.4 444
100 0.126 28.8 0.0608 0.001 27 48.0 1589.

B 103 0.006 4.7 0.0457 0.001 75 26.1 469.0
B 104 0.013 2.9 0.0512 0.003 32 15.4 163.6
B 105 2.2 0.0433 0.007 95 5.4 20.1

8000 1000 10 0.131 0.0154
100 0.122 284.6 0.0602 0.001 58 38.1

B 103 0.028 236.5 0.0399 0.003 37 11.8
B 104 0.016 163.5 0.0397 0.008 78 4.5

8000 4000 2.11 10 0.122 78.2 0.0154 0.000 52 29.8 420
100 0.132 16.4 0.0634 0.000 87 72.9 2518.

B 103 0.022 8.2 0.0438 0.001 47 29.7 418.1
B 104 0.005 5.5 0.0442 0.002 41 18.3 158.7
B 105 4.2 0.0409* 0.010 06 4.1 8.0

B 23105 3.8† 0.0635* 0.020 55 3.1 4.6
8000 16 000 2.09 10 262.5 0.0139* 0.000 68 20.5 201.1

100 0.131 56.1 0.0629 0.000 87 72.0 2480.
B 103 0.014 19.0 0.0467 0.001 15 40.6 788.7
B 104 0.009 11.1 0.0503 0.002 96 17.0 138.3
B 105 0.006 8.3 0.0411 0.006 89 6.0 17.2

B 23105 7.5 0.0423* 0.009 47 4.5 9.7
B 53105 7.0† 1.1106* 0.333 31 3.3 5.2
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P a(s) is correlated for different values ofs. These are addi-
tional correlations due to clusters of small sizes, which
likely to grow and propagate throughs in P t

a(s) for consecu-
tive time steps, i.e.,

^P t
a~s!P t8

a
~s8!&2^P t

a~s!&^P t8
a

~s8!&. ~39!

This correlation is at least partly captured by the correlati
measured for the binned data. It is to be distinguished fr
the correlations ofindependentrealizations, where correla
tions are expected in the cluster size distribution also, i.e

^P t
a~s!P t

a~s8!&2^P t
a~s!&^P t

a~s8!&. ~40!

This must be taken into account as soon as estimate
n̄(s) for different s are compared, as is done when an exp
nent is calculated by fitting. This effect is also present
06670
e

s
m
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-
r

P b, which is, however, diluted so enormously that it infl
ences the outcome only in an insignificant way.

The horizontal correlations could be estimated using
jackknife scheme@39#, similar to that used to calculate th
error bar of the exponent from the time evolution of
quenched Ising model@40#. While it is certainly essential for
the careful estimation of the error bar of an exponent, it
irrelevant for the discussion in this paper, as it is quant
tively based only onlocal comparisons of error bars~over-
laps!, while its global properties, i.e., shape and collap
with other histograms estimated, is not concerned with e
bars. Some authors even seem to dismiss the relevanc
these correlations completely@30#.

E. Parallelizing the code

Constructing clusters and keeping track of clusters rat
than of single sites seems to be in contradiction to any
7-12
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EFFICIENT ALGORITHM FOR THE FOREST . . . PHYSICAL REVIEW E 70, 066707 ~2004!
tempt to run the algorithm distributed, that is, splitting t
lattice intoS slices~one-dimensional decomposition—as p
riodic boundaries apply, the slices may better be called
inders!. Moreover, there is a general problem of paralleliz
tion which becomes apparent in this context: The us
bottleneck of parallel systems is the communication layer
order to keep the communication between sublattices as
as possible, fast parallel code on a lattice requires as
interactions between slices as possible, while the whole p
of doing physics on large lattices is the assumption of s
nificant interaction between their parts. It is this fundamen
competition of requirement and basic assumption wh
makes successful parallel code so rare and which seem
indicate that problems must have very specific characteris
in order to be parallelizable in a reasonable way.

However, it is indeed possible to run the algorithm d
scribed above on parallel machines successfully in the s
that it not only makes use of the larger amount of~distrib-
uted! memory available, but also of the larger amount
computing capabilities. In fact, the code was successf
rewritten using MPI@41# and has been run on two system
with distributed memory: The massively parallel machi
AP3000 at the Department of Computing at Imperial Colle
and on a cluster of workstations~25 nodes!.

In the following, the most important design characterist
are described, which proved important in order to make
code running reasonably fast. This concerns mainly the
tistics part, but the equilibration also needs some tricks.

MPI assures that packets sent from one node to anoth
a certain order are received in exactly the same order—in
language of MPI this means that the message orderin
preserved in each individual communicator. But how diff
ent communicators relate to each other, i.e., how one str
of packets relates to another one, is not specified. If,
instance, nodeA sends a packet to nodeB, and then to node
C, which then sends a packet to nodeB, this packet might
arrive earlier atB than the packet first sent byA, see Fig. 14.

However, it is one of the main goals of parallelization
avoid any kind of synchronization, which is extremely e
pensive. Even in a master-slave design, as was chosen
one encourages communication between the slaves when
they can anticipate what to do next or can indicate to e
other what to do next.

As explained above~Sec. II A!, an update consists esse
tially of two steps: growing and burning. Both processes
now distributed among the slices. The growing procedur

FIG. 14. NodesA, B, and C send messages in the order ind
cated. However, it might well happen that the message sent las
nodeC to nodeB, namely message 3, arrives at that node bef
message 1, sentbeforemessage 2 was sent, which arrivedbefore
message 3 was sent.
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realized by trying to growu21/S trees in each slice. This is
not an exact representation of a growing procedure tak
place on the entire lattice at once, because the latter h
nonvanishing probability to grow all trees at one particu
spot, while the parallelized version distributes them eve
among the different slices. Provided thatu21 is large com-
pared toS, this effect can certainly be neglected. The adva
tage of the procedure is that the growing procedure at e
slice does not need to be conducted by the master. The b
ing procedure is more complex, as the fire starts at one
ticular site of the entire lattice, so that it must be selected
the master. The exact procedure of the possibly follow
burning process depends on the stage of the algorithm.

In the following, the procedures are explained in terms
‘‘sites’’ rather than ‘‘cells,’’ as introduced in Sec. II C 2. Us
ing cells instead of sites makes the code slightly more co
plicated, but the changes are obvious. If the cells are orien
parallel to the borders of slices~see Fig. 11!, so that its width
is a multiple of 2 in the case of a hypercubic lattice, t
algorithm runs considerably faster, as the communication
tween the nodes is reduced by the same factor.

1. Equilibration

During the equilibration phase, it is not necessary to ke
track of all clusters. Nevertheless, there is some statis
which is very cheap to gather, namely the distribution
burnt clusters and the density of trees. The latter is v
simple, as this number changes in time only by the num
of grown trees minus the number of burnt trees. This is a
a cross-check for the overall statistics, as the tree densi
equivalent to the probability of a site to belong toanycluster
~4!.

The burning is implemented as follows: The mas
chooses a site from the entire lattice and sends the co
sponding slice~slave! the coordinate and~implicitly ! an
identifier which uniquely identifies this request within th
update step. The slice’s response consists of the numbe
sites burnt~possibly 0!, the identifier referring to the initial
request, and possibly up to two further, new, unique ide
fiers. These identifiers refer to the two possible subrequ
to the right and left neighboring slice due to a spreading
the fire. If a slice contacts another slice, it does so by send
the coordinates of sites which are on fire in the send
patch, together with a unique identifier. The contacted s
sends its result to the master, again together with the ide
fier and possibly two new ones, corresponding to the po
bly two contacted neighboring slices. In this way, the mas
keeps track of ‘‘open~sub!requests,’’ i.e., requests the mast
has been told about by receiving an answer containing in
mation about subrequests which have not been matche
receiving a corresponding answer. The structure of requ
forms a treelike structure, and if there are no open reque
the master must have received all answers of the curre
burning fire. It is very important to make it impossible th
by a delay of messages some answers are not counted,
would be if the master would just count open requests, w
out identifying them individually. It can easily happen th
the master receives an answer for a request without ha
received the information about the very existence of the

by
e
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G. PRUESSNER AND H. J. JENSEN PHYSICAL REVIEW E70, 066707 ~2004!
quest. It is worth mentioning that in this scheme the orde
burnings is irrelevant if the burn time is not measured,
was done here.

Adding up the number of burnt sites gives the total size
the burnt cluster. This number is finally sent to all slices. I
is nonzero, the step is considered to be successful.

After equilibration, the cluster structure of pointers a
roots as described above~see Sec. II C 1! needs to be con
structed. This is done in a naive manner: Keeping track
sites which have already been visited, every site is vis
once. The first site visited in each cluster becomes the roo
all sites connected to it, which become marked as visi
The procedure corresponds to the burning procedure
scribed above~see Sec. II C 4!.

Each slice maintains a local histogramP a, which contain
all clusters which do not have a site on the border to ano
slice. Otherwise, they are maintained at the master’s hi
gram, as discussed below. In this case, the~local! root site of
these clusters is moved to the border. As periodic bound
conditions apply, the only boundaries are those with ot
slices.

2. Collecting statistics

After finishing the equilibration phase, another conce
needs to be applied in order to count the total cluster s
distributionP t

a(s). At every update of the lattice, each slic
must keep track of the clusters in the same way as was
scribed in Sec. II C 1. Clusters which do not contain a site
a border to another slice are maintained locally, i.e., at e
node has alocal histogram. However, if a cluster contains
site at a border, it might span several slices. As soon a
cluster acquires a site at the border, it is removed from
local histogram and the site under consideration becomes
root of the cluster. The algorithm ensures that a cluster w
at least one site on the border has its root at the border.

During all processes~growing or burning!, the size of all
clusters is updated as usual, independent of the locatio
the root. If the status of a border site changes, its new va
or its change is put on a stack together with its coordina
During the growing procedure, the following changes of t
status are possible.

~i! New occupation. Change in occupation information fo
a site~cell!. If this is the only change, then it must have be
already occupied~this is only possible in an implementatio
using cells!. If this is not the case, the reference informati
pointing to the root site of the given cluster must be upda
also; see the next point.

~ii ! Merging border clusters. Change of the reference in
formation for a site~cell!. This can only happen if the sit
~cell! was~completely! unoccupied at the time of the chang
or did contain size information, i.e., it was itself a root.

~iii ! General merging of clusters. Change in size informa
tion for a site~cell!. Only an increase is possible, so that a
change can be represented by a single number indicating
size difference.

For each border site changing at each slice, the co
sponding information is sent to the master. Typically t
number of messages is not very large, because the total n
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ber of sites updated during a single growing phase is limi
by u21/S. The expected number of these messages is
given by the fraction of border sites in each slice, beca
changes in all borderclusters~i.e., clusters with at least on
site in the border! affect the bordersites, as the root of each
border cluster is a border site.

However, the data regarding the updates in the borde
not need to be sent from the slaves to the master, if
burning attempt following the growing fails, i.e., if an emp
site has been selected for lightning. Of course it is mu
more efficient not to send any data if not necessary. As th
is only a finite number of sites in each slice, the theoreti
limit of updates of border sites is bound by this numb
However, it is sufficient to allocate a reasonable amoun
memory (2L turned out to be enough! for the stack of mes-
sages to be sent and check its limits, similar to the stack u
in the burning procedure described in Sec. II C 4. Hencefo
the sending of the update information of the border is cal
‘‘sending the border.’’

The master maintains a copy of the state of the bor
sites and updates aglobal histogramof border clusters. By
sending the changes on the border to the master as desc
above, the master can update its copy of the configuratio
the borders as well as the global histogram. At the end of
simulation, all histograms~S slaves histograms plus the glo
bal histogram maintained by the master node! are summed to
produce the totalP a.

As suggested in Fig. 15, the slices maintain the point
within each slice, and these references are not change
the master, which only connectsbetweenslices. If a refer-
ence at the border changes at a slice, the master receiv
message to apply the corresponding changes~joining two
clusters!; if the size of a cluster changes, the master upda
the corresponding unique root; etc. These changes are
cated by the slaves, and the master only realizes them in
copy of the border sites. Only if a change in occupati

FIG. 15. The slices, three of which are shown here, maintain
references for all clusters within each slice~illustrated by arrows!,
even for border clusters. The referencesbetweenslices, however,
are maintained by the master. The variablesA50, B5L21, C
5I , and D5I 1L21 are the indices used for references with
each slice.
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EFFICIENT ALGORITHM FOR THE FOREST . . . PHYSICAL REVIEW E 70, 066707 ~2004!
occurs must the master actually perform some nontrivial
erations, because a newly occupied site might introduc
new connectionbetweenborders of different slices. From th
point of view of the master, only borders belonging to tw
different, neighboring slices are directly connected and the
fore to be maintained by the master, while the connectivity
the borderswithin each slice is indicated and maintained
the corresponding slave. Apart from that, the master m
tains the slice spanning structures in exactly the same wa
the slaves, e.g., a cluster having multiple roots among
various slices has a unique root at the master, etc.

The question arises how the master best keeps track o
changes of the borders. Ideally, a change of reference
site at the boundary is communicated to the master simply
sending the new pointer value~index!. By choosing a rea-
sonable indexing scheme, this is indeed possible. If the v
of the reference is within 0 andL21, whereL is the width in
terms of the number of sites~or cells! ~see Fig. 15!, the
reference denotes a site in the left border within the sa
slice. Similarly, if the value of a reference is withinI and I
1L21, whereI denotes the first index in the last column,
reference with such a value is bound to point to the ri
border of the same slice. If the master uses indexes of
range@L,I 21# for denoting cross references between slic
the references are therefore unambiguous and no transl
is necessary between indices used by the slices and ind
used by the master.

During the burning procedure, the master can make us
its knowledge about the borders. The site selected for star
the fire is most likely a bulk size, so that the correspond
slave needs to be contacted for the occupation informat
Three outcomes are possible.

~i! The site is unoccupied. Nothing happens, all slices
signaled to continue with growing.

~ii ! The site is occupied, but does not contain a bor
site. In this case, the slice contacted can send back the si
the burnt cluster~information it knows even without actuall
doing the burning as the size is stored in the root, wh
needs to be found anyway in order to find out whether
cluster is a border cluster! and the master can signal all oth
slices to send the border and to continue. After receiving
borders, it can update the histogram@56#.

~iii ! The site is occupied and contains a border site. In
case, the slice sends the reference of the border site ba
the master, which then contacts all slices to send the m
recent border update. It updates the border and the h
gram, deletes the cluster which is going to burn, and se
the ‘‘burning borders,’’ i.e., a list of all border sites whic
will be affected by the burning procedure to the slices in
form of a stack as described in Sec. II C 4. The slaves
this stack as the initial stack of the burning procedure a
delete the corresponding sites. No communication betw
the slices is necessary.

The global histogram contains much larger clusters t
the local histograms. In order to keep memory requireme
low, even for histograms of resolution unity, it is reasona
to introduce a threshold above which slaves use the glo
histogram to maintainP a even for local clusters~i.e., non-
border cluster!. For that purpose, a histogram ‘‘appendix
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has been introduced. This is a finite stack, which stores
size of the clusters together with the value oft856(T2t
11) as described in Sec. II C 3. During the growing pha
when such large clusters grow fast, one would obtain a
quence of stack entries of the form (s,t8), (s,2t8), (s
11,t8), (s11,2t8), (s12,t8),..., corresponding to entering
the appendix, (s,t8), increasing in size by 1, which give
(s,2t8), (s11,t8), etc. As soon as a cluster is larger th
the upper cutoff, each update causes two entries, of the f
(s,2t8), (s11,t8), the first for the deletion from the histo
gram, the second from the increase in the next slot. Th
entries possibly cancel, for example the sequence abov
equivalent to the single entry (s12,t8). It turned out to be
highly efficient to perform this cancellation, i.e., to check t
last entry in the appendix for being the negative entry of
one to be done.

As the maximum size of the appendix is finite, it must
emptied from time to time. The information about the size
the appendix of each slave is sent to the master together
the information about the borders. If a possible overflow
detected~2/3 of the maximum size in the implementatio
presented!, the master requests all slices to send the con
of their appendices and applies it to the global histogra
The slices then empty their appendices.

3. The random number generator

The random number generator~RNG! acquires a crucial
role when used in a parallel environment. WithM the num-
ber of iterations, the expected number of calls of the RNG
Mu21/r ~for M'107, u21'53104 this is more than
531011), so that an RNG such as ran1 in@42# with a period
of only '23109 is insufficient. Therefore, ran2 in@42# was
used for all simulations, both parallel and nonparallel, wh
has a period of.231018. If the number of RNG calls is
small enough, one can compare results obtained by mean
ran1 and ran2. No significant deviation was found.

In the parallel implementation, each slave requires an
dependent sequence of random numbers. This is a clas
problem in parallel computing@43,44#. The simplest solution
is to divide a single sequencer 1 , r 2 ,... into distinct subse-
quences. This can be done either by a leapfrog sch
@44,45#, where each subsequence consists of random n
bers which areScalls away, i.e.,Ssubsequences of the form
r u , r S1u , r 2S1u ,... with u51,2, . . . ,S unique at each slave
or by splitting the sequence@44#, so that each subsequenc
consists of consecutive RNG calls, i.e.,r 11uX , r 21uX , r 31uX
again withu51,2, . . . ,S and offsetX large enough to avoid
any overlap. The latter scheme has the advantage tha
sequence consists of consecutive RNG calls and there
has been used in the following. The implementation of
offset X at each slave is easily realized by restoring all st
variables of the RNG, which have been produced once
for all in a single run producing allXSrandom numbers and
saving the state variables on a regular basis. However, su
technique is advisable only if the RNG calls do not domin
the overall CPU time, in which case it would take almost
long as the simulation itself to produce the random numb
required for it.
7-15
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TABLE III. Parameters and results for different choices ofL andu21. The average cluster size is denot
by s̃, for definition see Eq.~1!, but due to a truncation in the histogram for some of the simulations in
range 2000<u21<16 000, the number presented is actually the average size of the burnt cluster.
stationary state it is—apart from small corrections—also given by (12 r̄)/(ur̄), see Eq.~7!. Values ofu21

andL printed in bold indicate results shown in Fig. 16; the other results are only for comparison. All da
based on 53106 ~successful! updates~see Sec. II B 1! for the transient and statistics, apart from those prin
in italics, which are based on short runs (53106 updates for the transient and 13106 updates for statistics!.

u21 L n(1) s̃ r̄ (12 r̄)/ur̄

125 1000 0.045 53 204.07 0.379 73 204.18
125 1000 0.045 52 203.81 0.379 77 204.15
125 4000 0.045 53 203.88 0.379 83 204.10
125 4000 0.045 52 203.77 0.379 83 204.10
250 1000 0.044 51 395.03 0.387 56 395.06
250 1000 0.044 52 394.08 0.387 50 395.15
250 4000 0.044 54 394.97 0.387 66 394.89
250 4000 0.044 54 395.29 0.387 65 394.91
500 1000 0.043 80 764.73 0.393 16 771.75
500 1000 0.043 80 764.81 0.393 15 771.77
500 4000 0.043 82 771.12 0.393 43 770.88
500 4000 0.043 82 771.90 0.393 43 770.87
1000 1000 0.043 28 1495.36 0.397 16 1517.91
1000 1000 0.043 28 1490.05 0.397 14 1518.00
1000 4000 0.043 31 1510.85 0.397 61 1515.00
1000 4000 0.043 31 1513.13 0.397 64 1514.81
1000 8000 0.043 32 1510.10 0.397 63 1514.91
2000 4000 0.042 96 2976.34 0.400 53 2993.35
2000 4000 0.042 97 2990.50 0.400 54 2993.15
2000 8000 0.042 97 2995.67 0.400 60 2992.56
4000 4000 0.042 73 5929.24 0.402 58 5935.91
4000 4000 0.042 73 5930.97 0.402 49 5938.03
4000 8000 0.042 74 5931.32 0.402 61 5935.15
4000 8000 0.042 73 5935.36 0.402 56 5936.47
8000 4000 0.042 55 11 786.97 0.404 05 11 799.72
8000 4000 0.042 55 11 788.90 0.404 06 11 799.07
8000 8000 0.042 57 11 801.31 0.404 12 11 795.98
8000 8000 0.042 57 11 792.82 0.404 13 11 795.38

16 000 4000 0.042 44 23 430.01 0.405 25 23 481.82
16 000 8000 0.042 43 23 466.93 0.405 40 23 467.22
16 000 8000 0.042 43 23 446.10 0.405 42 23 465.64
16 000 16 000 0.042 45 23 449.31 0.405 41 23 466.57
32 000 16 000 0.042 32 46 443.83 0.406 60 46 701.82
32 000 32 000 0.042 33 46 731.44 0.406 62 46 698.51
64 000 32 000 0.042 20 91 148.64 0.407 77 92 952.40
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III. RESULTS

The sections above were only concerned with the tec
cal issues of the model and its implementation. Some of
actual results from the simulation carried out using the n
algorithm have been published already@18#. This article was
focused onn̄(s). The main outcome was that the standa
scaling assumption~12! is not supported by numerics, so th
main conclusion was that the modelis not scale invariant.

In the following, these results are shortly restated a
discussed. Other observables are connected with this o
vation to see whether it is onlyn̄(s) which lacks scale in-
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variance. All results presented are based on the same s
lations, the parameters of which are given in Table III.

A. Cluster size distribution

Before the actual findings are discussed, it is importan
consider how to avoid finite-size effects, which otherwi
might damage the results. Usually, finite-size effects
avoided by keeping the correlation lengthj small compared
to the system size. However, it requires a significant amo
of CPU time to actually determine the correlation leng
7-16
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Moreover,a priori it would not be clear which ratioj/L to
choose in order to avoid finite-size effects.

The simplest way to determine whether finite-site effe
are present is to compare estimates of observables for
systems with the same parameters but different sizes@40#. If
finite-size effects are not present, the differences between
estimators of those two systems must be within the error
of the quantity under consideration. This approach has
drawback that each set of parameters must be simulate
least twice, but it gives full control over finite-size effect
Apart from u21564 000, which is specially marked in mo
of the plots, this approach has been applied throughout
results presented. The method was discussed in greater d
in @18#.

Figure 16 shows a central result of@18#. This figure con-
tains the reduced~and binned! data in the form

P a~s!

P a~1!
, ~41!

which has the convenient property to be unity fors51. The
normalizationP a(1), which converges anyway to a finit
value asu21→` ~see Table III!, does not affect any of the
results, especially not the~attempted! data collapses.

FIG. 16. The rescaled and binned histogramP a(s)st* /P a(1),
wheret* 52.10 foru215125,250,500, . . . ,32000,64 000~as indi-
cated! in a double logarithmic plot. The linear sizeL is chosen
according to the bold printed entries in Table III and large enoug
ensure absence of finite-size effects. The error bars are estim
from shorter runs. The rightmost histogram~dotted,u21564 000)
could not be cross-checked by another run, see text. The da
lines belong to different exponents, whose value is specified as
sum of the slope in the diagram andt* , i.e., a horizontal line would
correspond to an exponent 2.1. The short-dashed lines repr
estimated exponents for different regions of the histogram~2.22 for
s within approximately@20,200# and 2.19 fors within @200,2000#!;
the other exponents are from the literature, namely 2.14~3! in
@15,24# and 223/91'2.45 in @46#. Since it was impossible to relat
these exponents to any property of the data, the exact position o
lines associated with them was chosen arbitrarily.
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The crucial problem shown in Fig. 16 is the intermedia
minimum that develops asu21 is increased. It renders th
data collapse as described by Eq.~12! impossible~for more
details, see@18#!. Figure 17 shows the same data again, n
in an attempt to form a data collapse, usings0(u)5u2l*

with l* 51.11 from Eq.~21! andt* 52.10~for comparison,
see Table IV!. As expected, the collapse fails.

In less technical terms, it was shown in@18# that there is
no choice oft, which allows a data collapse forP a(s;u). It
seems that the distribution is the same for two different v
ues ofu up to a certain cluster size, which increases see
ingly unbound withu21, i.e., for two very large values o
u21 the two distributions collapse without any rescaling. B
yond this cluster size, the distributions deviate. The one w
the largeru21 forms a deeper dip and ascends afterwards
a maximum, which can, by rescaling, be arranged to be
same for allu21. The ever growing dip prohibits a reason
able definition of a lower cutoff and makes a data collap
impossible. Equally one could arrange the dips to be at
same height and the maximum to increase inu21.

The key problem of the DS-FFM is that more than o
length scale is visible apparently for any system sizeL. The
statistics ofn̄(s) is not even asymptotically dominated by
single length scale. For any system size, ann̄(s) only given
for all s larger than any lower cutoff allows the identificatio
of u by the shape ofn̄(s) alone.

This indicates that simple scaling~12! does not apply and
the exponentt is undefined. Keeping this in mind, it is ver
instructive to look for other properties as well and investig
their scaling.

1. Finite-size scaling

The failure of the DS-FFM to obey proper finite-size sc
ing has been observed in@22# already. In the following, some
finite-size scaling principles have been applied in a straig
forward manner and subsequently ruled out.

o
ted

ed
he

ent

he

FIG. 17. Attempt to collapse the data shown in Fig. 15 us

t* 52.10, s0(u)5u2l* , and l* 51.11 as derived from Eq.~21!.
As expected, the data do not collapse. The big arrow points in
direction of increasingu21.
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As known from percolation@14#, the generalized form o
the scaling behavior ofs0 is

s0~u,L !5u2lm~uLs!, ~42!

where m(x) is a crossover function describing the depe
dence ofs0 on the two parametersu andL. For sufficiently
large argumentx, the crossover function is expected to a
proach a constant, such that Eq.~20! is recovered. For smal
arguments, however, the dependence of the cutoff is
pected to be strongly dominated byL, just like in equilibrium
critical phenomena, whereL takes over the role ofj for
sufficiently small systems. Thus, for small argumentsm(x)
}xl, so that for sufficiently smallL, s0 becomes independen
of u.

Generic models of SOC do not have any tuning para
eters other than the system size, so that the cutoffs0 is only
a function ofL. In this sense, finite-size scaling is the on
scaling behavior in SOC, and a failure of the model to co
ply to finite-size scaling is identical to the failure to comp
to simple scaling altogether. Therefore, one might be s
prised to see a simple scaling analysisand a finite-size scal-
ing analysis in an article on an SOC model. However,
forest fire model is different in this respect, as it has
additional parameteru, which is, supposedly, finite only be
cause of the finiteness of the system size. In the thermo
namic limit, it supposedly disappears as a free paramete

As seen above~see Fig. 17!, theu dependence ofn̄(s;u)
cannot be captured bys0 in the scaling function alone. How
ever, the scaling form~12! would remain valid in some sens
if in the finite-size scaling regime theL dependence o
n̄(s;u) enterss0 only. Therefore, the original form~12! is
generalized to

n̄~s;u,L !5s2tG„s/s0~u/L !…, ~43!

ignoring that it has been shown above already that it does
hold in the limit wheren̄(s;u,L) becomes independent ofL.
In this section, the dependence ofn̄(s;u,L) on L is investi-
gated in the limit of largeu21 and smallL. A similar study
has been performed by Schenket al. @22#, however on much
smaller scales and usingP b.

If the form ~43! holds, it should be possible to collaps
n̄(s;u,L) for different L by choosing the correctt and s0 ,
just like for the cluster size distribution of standard perco
tion. This turns out not to be the case, as can be seen in
18: Thesmaller L is, the stronger the changes of shape o
n̄(s) for any u tested. Consequently, Eq.~43! does not hold,
and ass0 is only definedvia its role as cutoff in Eq.~43!, s0
is undefined and Eq.~42! remains meaningless.

One might argue that the average density of trees,r̄ @see
Eq. ~4!#, is the relevant parameter ofn̄(s), so thatn̄(s) has
the same shape for different, sufficiently smallL and con-
stant r̄. However, as shown in Fig. 20, for any value ofu
there is a value ofL, such thatr̄ varies considerably with
decreasingL. Especially, there seems to be a maximum t
density for every system size, so that for large values or̄
there is a smallest system sizeL, below which this density
cannot be reached. This maximum increases monotonic
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with system size, so that the maximum for every finite s
tem size is smaller than the expected average tree densi
the thermodynamic limit, which is, according to Table II
larger than 0.407 77 and was recently conjectured to be
large as 0.5927 . . . @47#, namely the critical density of site
percolation@29#. Accepting this limitation, Fig. 19 shows a
example for threen̄(s) with roughly the samer̄ and different
L and u. Most surprisingly, two of the histograms collaps
already without rescaling, while the third (L5500) reveals
the same problems as visible in Fig. 16. Hence, finite-s
scaling also does not work for fixedr̄.

That large densities of trees cannot be reached by s
system sizes is related to the specific way the histograms
generated and the density measured: Is it before or after

FIG. 18. Plot of the rescaled PDFP a(s;u,L)st* /P a(1;u,L) for
fixed u2151000 and different system sizes, L
5125,250,500,1000. The different shapes make it impossible
collapse the data, as would be expected from a finite-size sca
ansatz~43! and ~42!.

FIG. 19. Plot of the rescaled PDFP a(s;u,L)st* /P a(1;u,L) for
fixed r̄'0.397: L5500 with 1/u52000 (r̄50.396 827), L
51000 with 1/u5940 (r̄50.396 825), andL54000 with 1/u
5870 (r̄50.396 883). Again, a data collapse is impossible.
7-18
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~successful! burning? For sufficiently large systems, it b
comes irrelevant when to do it, because two histograms,
measured before, the other one right after the burning, d
only by one cluster. Also the question of whether to avera
only over successful burnings is irrelevant, because the
ference between a histogram before and after the burnin
only one cluster.

Clearly, for small systems, the difference between the
togram before and after the burning is just the one enorm
cluster of sizeO(u21). Figure 21 shows the difference. Eve
though in principle every density is reachable for every s
tem size if the histogram is measured before burning,

FIG. 20. The average density of trees,r̄, as a function ofu and
for variousL. For sufficiently small systems, the maximum inr̄ is
much smaller than the expected density at the ‘‘critical poin
which is larger than 0.407 77 found as in Table III. The straight l
marksr50.396 827, the density chosen in Fig. 19. The inset i
magnification of the crossing of the straight line with the simulat
data, and shows all three values ofu,L used in Fig. 19.

FIG. 21. Comparison between the rescaled and binned h
grams measured before and after the burning for smallL5125 and
largeu2151000. As expected, only the statistics for larges is af-
fected. The dashed line shows the data forP b(s).
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newly defined histograms do not have a considerably dif
ent shape, so that a collapse remains impossible. For
ample, the problems shown in Fig. 18 become even m
pronounced, if the histogram is taken before burning.

Surprisingly and actually in contradiction to what h
been said in Eq.~6!, there is a discrepancy between the clu
ter size distribution of burnt clusters,P b, and the overall
cluster size distributionP a, even if the latter is measure
before the burning takes place. This sounds paradoxic,
cause the random picking of a cluster to be burnt is jus
sampling ofP a. This cannot be caused by the correlati
between those samples, due to the fact thatnt11(s) is actu-
ally a function of the cluster chosen att—a correlation like
this would be equally picked up byP a. The reason for this
discrepancy is the fact that a site picked randomly as
starting point of the next fire is necessarily occupied. The
fore, nt(s) with a low occupation density entersP b over-
weightedly. As low density states contain many more sm
clusters than large ones,P b overestimates the probability o
small clusters. A sample forP b at a low density is indistin-
guishable from a sample at high density, while a sample
P a trivially contains the information about the density. T
illustrate that, one might imagine a sequence of~burnt! con-
figurations that consists of one state, with exactly one clu
of size 1, and a second state, with exactly one cluster of
L2. The two configurations appear with a frequency such t
a cluster of size 1 is burnt down as often as a cluster of s
L2. The resultingP a reports that a randomly chosen si
belongs to a cluster of sizeL2 with probability 1

2 and to a
cluster of size 1 with probability 1/(2L2), while P b incor-
rectly reports the same probability for both cluster sizes. T
problem can actually already be spotted in Eq.~6!, which
contains ar on the RHS, which should rather ber(t). The
problem disappears in the limit wherer(t) hardly changes in
time, i.e., in the limit ofu21!L2.

It is also clear why Eq.~7! breaks down for small system
and largeu21: The average size of the burnt cluster tends
L2, while the density tends to 0. Apparently Eq.~7! must be
incorrect forr,(L2u11)21.

2. Scaling of the moments ofP a

According to Eqs.~12!, ~20!, and~8!, thenth moment of
P a should scale like~this analysis has apparently been intr
duced to SOC by De Menechet al. @25,48,49#!

sñ5
(ss

nsn̄~s;u!

(ssn̄~s;u!
5qnu2l~21n2t!1corrections, ~44!

whereqn is a nonuniversal amplitude~see Sec. III A 3! andl
is also known as a gap exponent@50#. The corrections are
due to the lower cutoff and the asymptotic character of
scaling, which is expected only for ‘‘sufficiently smallu ’’
@26#. In turn, one can infer a scaling form like Eq.~12! if the
moments scale in the form of Eq.~44!.

Contrary to what is observed in an attempt of a data c
lapse, it turns out that the moments follow beautifully th
scaling behavior. Figure 22 shows the scaling of the m

’

a

o-
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G. PRUESSNER AND H. J. JENSEN PHYSICAL REVIEW E70, 066707 ~2004!
ments forn52,3,5,10. By simply fitting the double logarith
mic data to a straight line, i.e.,

log~sñ!5an82sn log~u!, ~45!

one can derive an estimate of the exponentssn and in turn
compare them to the expected linear behavior,

sn5l~21n2t!. ~46!

The resulting estimates, usingn52, . . . ,8 ands151 from
Eq. ~1!, are l51.0808 . . . andt52.0506 . . . , where no
statistical error is given because the systematic error, du
neglecting of the lower cutoff as well as the corrections~44!,
is expected to be much more important. By using the
sumptions151, this result is consistent with Eq.~21!. The
results are shown in Fig. 23.

The exponent found fort is remarkably close to the ac
cepted value of standard 2D percolation, 187/
52.054 945 . . . . However, if one leaves out the results f
u21564 000, which seem to be a bit off the lines shown
Fig. 22, one finds a slightly larger value for the expone
namelyt52.0864 andl51.0998 . . . . This is much closer
to thet* 52.10 used above. For comparison to values fou
in the literature, see Table IV.

It is very remarkable that the resulting estimates for
exponents are so impressingly consistent, even thoug
Sec. III A it turned out that the scaling assumption~12! does
not actually hold; one would much rather expect a failure
the moments to comply with Eq.~44!, or a failure of the
exponents to comply with Eq.~46!. Apparently the moments
are hiding the breakdown of simple scaling. Therefore, i
interesting to analyze the behavior of the presumably univ
sal amplitude ratios, which are solely a property of the~pre-
sumed! scaling function.

Another explanation for the moments being well behav
is the following: According to@18#, one might expect the
moments to behave like

FIG. 22. Scaling of thenth moments ofP a in double logarith-
mic plots. The straight lines show the results of a fit as exp(an8)u

2sn,
see Eq.~44!.
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u2xmin

ds f~s!sn1E
u2xmin

`

ds sn2tG~s/u2xmax!, ~47!

where the first integral describes the behavior up to the m
mum, which scales likeu2xmin (xmin'0.95), and the second
integral the behavior from the minimum on. Because Fig.
indicates already that the scaling functionG does not col-
lapse using a scaleu2xmax, this scaling does not work and ca
therefore be only an approximation. While the first integra
bound by O(u2(n11)xmin), the second integral give
O(u2(n112t)xmax) asymptotically, which dominates the mo
ments for xmin(n11),xmax(11n2t), which leads to n
.9.08 usingxmax'1.2 andt'2.1. Figure 22 shows clearly
deviation from the straight line behavior foru21564 000
andn510 and even forn55. It remains unclear whether thi
is due to the effect discussed or simply a finite-size proble
According to the findings presented in Sec. III A 3, the lat
might well be the case.

It is worthwhile to point out that the analysis in this se
tion arrives at estimates for the critical exponents very cl
to those obtained by Pastor-Satorras and Vespignani@25#,
who, however, allow for the corrections in Eq.~44! that were
omitted above.

3. Universal amplitude ratios

In general, simple scaling involves two additional nonu
versal parametersa andb,

n̄~s;u!5as2tGS s

bs0
D . ~48!

For 1,t,2, the lower cutoff becomes asymptotically irre
evant compared to the upper cutoff for all momen
n>1—indeed the effectivet of sn̄(s;u) fulfills this condi-

FIG. 23. Exponentssn of the scaling ofsñ in u vs n. The slope
of this curve givesl, and t can be derived from the offset. Th
straight, full line shows the resultsl51.0808 . . . and t
52.0506 . . . ; the dashed line showsl51.0998 . . . and t
52.0864 . . . from a fit excludingu21564 000.
7-20
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TABLE IV. Exponents of the forest fire model found in the literature. The first column indicates
source, the second column the method.P(s) denotes a direct analysis ofn̄(s;u), which sometimes may have
been just an estimate of the slope ofn̄(s;u) rather than a data collapse. For details, the original sou
should be consulted. The entry ‘‘moments’’ refers to an analysis of the moments ofP(s), the entry ‘‘theo-
retical’’ to theoretical considerations regarding the relation of the forest fire model to percolation.

Reference Method t l

Christensenet al. @16# P(s) 2.16~5!

Henley @21# P(s) 2.150~5! 1.167~15!

Grassberger@17# P(s) 2.15~2! 1.08~2!

Clar et al. @15# P(s) 2.14~3! 1.15~3!

Honecker and Peschel@20# P(s) 2.159~6! 1.17~2!

Pastor-Satorras Vespignani@25# moments 2.08~1! 1.09~1!

Schenket al. @46# theoretical andP(s) 2.45 . . . 1.1
Grassberger@47# P(s) 2.11 1.08
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tion as 2,t,3 @24#. Neglecting the lower cutoff then give
for the nth moment ofsn̄(s;u)

sñ5a~bs0!11n2tgn ~49!

with

gn[E
0

`

dx dx11n2tG~x!. ~50!

In order to construct universal amplitude ratios, one need
get rid of all exponents and parameters. This can be achie
by considering

sñ

~s2̃!n/2
5@a~bu2l!~12t!#~12n/2!

gn

g2
n/2 ~51!

and @Eq. ~51! with n51]

s̃

As2̃
5@a~bu2l!~12t!#1/2

g1

g2
1/2. ~52!

If one now multiples Eq.~51! with the (n22)th power of
Eq. ~52!, everything cancels apart from thegn ,

sñ

~s2̃!n/2

~ s̃!~n22!

~s2̃!~n22!/2
5

gng1
n22

g2
n21 . ~53!

It is worth noting that for a trivial case, wheresñ}( s̃)n, the
effective exponentt is necessarily unity, and Eq.~51! as well
as Eq.~52! are already independent ofu.

A further simplification is to imposeg151 and g251,
which fixes the two free parametersa andb in Eq. ~48!, so
that

gn5
sñ~ s̃!~n22!

~s2̃!
~n21!

~54!

for n>1. In Fig. 24, this quantity is shown forn53,4,5,6.
Now, for u21564 000 a deviation is clearly visible—in tur
06670
to
ed

that means thatu21564 000 requires at least systems of t
size L564 000, which might explain the large value ofr̄
obtained in@47#. Apart from that, this analysis agrees wi
the result found in Sec. III A: The supposedly universal a
plitude ratios keep changing withu and an asymptote canno
be estimated, i.e., the scaling~12! is broken.

4. Burning time distribution

Another distribution of interest is the distribution of burn
ing times, PTM

(TM ;u). The statistics are comparativel
small for this quantity, as the burning time is defined only f
the cluster removed. However, they still seem to be go
enough to allow us to make a statement about their sca

behavior. The rescaled dataPTM
(TM ;u)TM

b* with a trial ex-

ponentb* 51.24 can be seen in Fig. 25. The intermedia
part of the distribution betweenTM54 and the maximum
seems to bend down asu21 increases, but the developing d
is much less pronounced than in Fig. 16. Nevertheless,
region where a data collapse seems possible moves ou
wards larger values ofTM , which again prohibits simple

FIG. 24. The supposedly universal amplitude ratiogn ~54! for
n53,4,5,6. The error bars are based on a jackknife scheme@39,40#
using a roughly estimated correlation time of 50, see Table II.
7-21
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G. PRUESSNER AND H. J. JENSEN PHYSICAL REVIEW E70, 066707 ~2004!
scaling. Assuming that the bending might become weaker
sufficiently largeTM leads to a data collapse shown in Fi
26, using an exponentn850.6 as defined in Eq.~22!. How-
ever, only for values ofTM'TM0

will the data possibly col-
lapse. Again, this violates the assumption of simple scal
namely that there is aconstantlower cutoff above which the
behavior is universal.

The only remaining exponent of those defined in S
II B 4, m8, relates the statistics ofs andTM . It requires the
bivariate distributionP(s,TM ;u), as the exponent is derive
from E(TMus)}s1/m8, which is essentially equivalent to Eq
~17!. The distributionP(s,TM ;u) is shown in Fig. 27. At

FIG. 25. The rescaled probability distribution of the burni
time, PTM

(TM ;u). Similar to Fig. 16, a dip seems to form betwee
the low TM region and the maximum, which again renders a d
collapse impossible.

FIG. 26. Attempt of a data collapse forPTM
(TM ;u). Only at the

far end of the scaling function at the descent from the maximum
the data seem actually to collapse. This, however, is not suffic
for a data collapse. The big arrow points in the direction of incre
ing u21.
06670
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first glance, the assumption of a power-law dependences
andTM seems to be confirmed. Also the width of the dist
bution seems to be very small, with almost no change o
five orders of magnitude ins. However, the plot is double
logarithmic, so that the width roughly scales like the slop
which is about 0.6, as shown by straight lines. This matc
perfectly the exponent chosen to rescaleP ~see the caption of
Fig. 27!.

By inspectingE(TMus;u) and E(suTM ;u) for variousu,
one can determinem8 as a slope in a double logarithmic plo
Figure 28 shows thatm8 remains ambiguous and deviation
from the expected behavior do not vanish asu21 is in-
creased. Asymptotically one might expect 1/m8'0.62, while
(t* 22)/(b* 21) suggests 1/m8'0.417. The value of 0.62
is consistent with the rough estimate 0.6 made in Fig.
Figure 28 also shows two other exponents, 0.53 and 0.7,
former being in line with the value found in the literature
0.529~8! @15#.

Conclusively, it is noted that the other observable ava
able in this study,TM , does not seem to provide an altern
tive way to ascribe the DS-FFM critical behavior in the sen
of the scaling behavior as proposed in the literature.

B. Tree density as a function of time

As mentioned above~see Sec. III A 1!, the density of
trees,r̄, is actually a function of time. Initially, it is periodic
around the average value, with an amplitude that depe
mainly on u. This amplitude decays in time and after suf
ciently long timesr(t) looks like a random walk aroundr̄.

Figure 29 illustrates how the period and the amplitu
depend onu andL: The period is proportional touL2, while
the amplitude mainly depends onu, i.e., the strength of the
influx }u21. The reason for the former is easy to unde
stand: u21/L2 is proportional to the fraction of newly
grown trees@20#; the change of the tree density is roughly

d

dt
r5

12r

r

1

uL22h„r~ t !,t… ~55!

assuming that it hardly changes during the growing. Oth
wise, one would have to introduce a microscopic time sc
which makes it possible to measure the tree density on
time scale on which the trees are grown. The prefactor
2r)/r takes into account that only empty sites can be re
cupied and that an occupied site is required for the burnin
start. The second term on the right-hand side,h„r(t),t…, is a
noise which represents the burning of the trees. From
equation, one can already expect that the period is roug
linear in uL2r̄/(12 r̄). This has already been measured
detail by Honecker and Peschel@20#; the numerical results
presented here~Fig. 29! are fully consistent with their re-
sults.

Apart from the relevance of the periodic behavior for t
equilibration time, the periodic behavior ofr(t) is physically
of great significance: What distinguishes the state of the s
tem for a givenr at the ascending and the descendi
branches? Trivially, the sequence of configurations of
system in time is Markovian, while the tree density alone

a

o
nt
-

7-22



dark
o
t as

n, as

EFFICIENT ALGORITHM FOR THE FOREST . . . PHYSICAL REVIEW E 70, 066707 ~2004!
FIG. 27. Binned density plots ofP(s,TM ;u) for different values ofu on a double logarithmic scale. High densities are presented as
areas. For better presentation,P(s,TM ;u) has been multiplied by a factors1.7, tilting the distribution similar to those shown in Fig. 16, s
that the second maxima in the distribution, those at larges andTM , are roughly as high as the first maxima, i.e., they show in the plo
dark as arounds55. SinceP(s,TM ;u) is a histogram only of burnt clusters, it contains a factors compared ton̄(s) @see the discussion
around Eq.~4!#. Therefore, the exponent 2.7 needs to be compared tot* 52.10, indicating that the width ofP(s,TM ;u) roughly scales like
s0.6, so that the reduced height ofP(s,TM ;u) is caused by an increase in width. This coincides well with the slope of the distributio
shown by a straight line. Thus, the relative width remains roughly constant.-
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a time series is certainly not. The configuration someh
manages to ‘‘remember’’ whether the tree density was
creasing or decreasing during the last update, in orde
keepr(t) periodic.

One explanation for this behavior might be a ‘‘growin
and-harvesting’’ concept: From the initially completely ra
dom tree distribution, larger and larger patches are form
so that larger and larger patches are harvested by lightn
When the density reaches the maximum, for a while
patches harvested remain large compared to the am
grown. This is because the growing process does not actu
produce those large patches itself, but makes them avail
to the harvesting by continuously connecting smaller patc
in areas where the lightning has not yet struck. This proc
goes on until almost all the trees are newly grown, i.e.,

FIG. 28. E(TMus;u) and E(TMus;u), based on the binned his
togramP(s,TM ;u) for different values ofu21. The straight lines in
the plots are 1.4s0.615 for u215125 ~left-hand plot! and 1.6s0.57 for
u2158000. The two dashed lines in the right-hand plot show al
native exponents 1/m850.7 and 1/m850.53, which are consisten
with data for small values ofs or for large values.
06670
w
-
to

d,
g.
e
nt
lly
le
s

ss
e

trees are distributed almost randomly, apart from the spa
correlation in density. The period of this process would
proportional to the time it takes to renew the entire syste
which isL2ur̄/(12 r̄), namelyL2 divided bys̃, see Eq.~7!.

The time-dependent tree density gives only a hint of w
actually happens in the system. It would be very instruct
to study the two-point correlation function as a function
time to answer the question of whether the explanation ab
is actually valid.

C. Discussion

From the results presented above, it becomes clear
the forest fire model does not show the scaling behavior
pected for a system, which becomes critical in the appro

r-

FIG. 29. The density of trees as a function of time, plott
versus the rescaled time (12 r̄)t/(ur̄L2). Upper panel: Plot for
u215125 andL51000,2000,4000 with an additional plot foru21

5500 andL54000 shown as a dashed line, for comparison
period and amplitude. Lower panel: Same plot foru215500 and
L51000,2000,4000.
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ate limit ~namelyL→` andu21→`). One might argue tha
another scaling ansatz could lead to a distribution which
asymptotically scale-free in this limit, for example a mul
fractal ansatz@49# or the one proposed in@46#, where more
than one scale is assumed to govern the model. For an
ymptotically scale-free distribution, the scales have to
verge or to vanish in the appropriate limit. It has been s
gested already very early@20# that more than one
characteristic length scale can be found in the forest
model.

However, changing the scaling assumption would enta
new definition of the exponentst, D, etc., which would
therefore prohibit comparison with other results which a
based on the assumption of simple scaling~12!. Moreover,
introducing multiple scales would stretch the notion of u
versality, especially the universality of the scaling functio
to its limits. As can be seen in Fig. 16, the shape of
distribution functionis not universal, i.e., the shape of this
function is unique for every singleu21, even forL→`. This
is in direct contradiction to the concept of universality, sc
ing, and scale invariance.

However, it might be possible to reestablish simple sc
ing by introducing another mechanism in the model, as w
done, for example, in the ‘‘autoignition forest fire mode
@51#. If there were, for example, a mechanism parametri
by u, such that

n̄~s;u,u!5stG„s/s0~u,u!…, ~56!

then simple scaling might be reestablished possibly
choosing an appropriateu5u(u); even the cutoffs0 , which
was assumed to diverge withu21, would then effectively
depend only onu. Currently, there is no hint of what this ne
parameteru could be.

Lise and Paczuski@8# suggested for a similar problem i
the OFC model@7# to define an exponentt by the slope of
the distributionP a(s), imposing the remaining backgroun
F(s,L,u21), to be as straight as possible,

ln„P a~s!…52t ln~s!1F~s,L,u21!. ~57!

This ansatz, in fact based on a multiscaling ansatz, wo
indeed allow the measurement of an exponent, however
some degree of ambiguity. The crucial problem with th
approach is that, first, it again does not allow any dir
comparison to other models, where the exponents are de
via Eq. ~12! and that, secondly, the notion of a presuma
universal exponent hides the fact of broken scaling.

From Sec. III A, one might conclude that there does
even exist a limiting distribution forn̄(s;u). However, even
if it exists, that does not mean that simple scaling is obey
and if it does, it is still open whether the exponents are n
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trivial or not and whether the model posseses any spa
temporal correlation which does not vanish on sufficien
large scales.

IV. SUMMARY

Using an alternative method for simulating the forest fi
model on large scales, it is possible to make clear statem
about the validity of the scaling assumption of this mod
The two observables investigated in this paper suggest
model does not develop into a scale invariant state.

The method is based on the Hoshen-Kopelman algori
@32# and uses a master-slave parallelization scheme to s
late the model on very large scales and very large sam
sizes. The key to the parallelization is to decompose the
tice in strips and to encode the connectivity of these strip
the border sites. Clusters crossing these strips are then m
tained by the master node, while clusters within a strip
maintained on the local nodes. There is almost no data
change apart from the border configuration, which lowers
impact on the network linking the nodes.

The resulting distributionP a(s) is, unlike other simula-
tions found in the literature, the distribution ofall clusters in
the system, rather than just the burnt clusters. The resu
statistics then allows us to draw clear conclusions as to w
extent the model does actually obey the scaling assump
This turns out not to be case. The violation of scaling is a
observed in the distribution of the burning time. Concl
sively we find that there is no reason to assume that
Drossel-Schwabl forest fire model develops into a criti
state. This is in line with the conclusion by Grassberger@47#,
who, however, still finds some signs that the forest fire mo
will finally show some characteristics of standard perco
tion.
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