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Efficient algorithm for the forest fire model
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The Drossel-Schwabl forest fire model is one of the best studied models of nonconservative self-organized
criticality. However, using an alternative algorithm, which allows us to study the model on large statistical and
spatial scales, it has been shown to lack simple scaling. We thereby show that the considered model is not
critical. This paper presents the algorithm and its parallel implementation in detail, together with large-scale
numerical results for several observables. The algorithm can easily be adapted to related problems such as

percolation.
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[. INTRODUCTION tation of the algorithm has produced data of very high

statistical quality. Some of the results have been already pub-

The assumption that self-organized criticali§OC [1]is  lished elsewhergl8].
the correct framework to describe and explain the ubiquity of The structure of the paper is as follows. Section II con-
power laws in nature has been greatly supported by the ddains the definition of the model together with its standard
velopment of nonconservative models, because natural pr@Pservables and their relations. Then the algorithm is ex-
cesses are typ|ca||y dissipa[ive_ Contrary to these mode|§’|ain6d in detail. The section finishes with a detailed discus-
analytical work has suggested that the deterministic part o$ion on the changes necessary to run the algorithm on paral-
the dynamics must be conservative in order to obtain SC&'@' or distributed machines. In Sec. lll, results for the two-
invariance[2,3]. However, on a mean-field level, this is not dimensional FFM are presented and analyzed. The paper
necessarily tru¢4], which has been exemplified in an exact concludes with a summary in Sec. IV.
solution of a model that has a forest-fire-like drivifg].
However, as a random neighbor model, the latter lacks spa-
tial extension.

The Drossel-Schwabl forest fire mod@S-FFM) [6] is This section is mainly technical: After defining the model,
one of the few spatially extended, dissipative models whictall relevant details of the implementation are discussed.
supposedly exhibit SOC. Contrary to the Olami-Feder-Apart from concepts such as the change from a tree-oriented
Christensen stick-slip modgT], where criticality is still dis-  algorithm to a cluster-oriented algorithm, concrete technical
puted (for recent results, see, for exampl8-10]), for the  details are given, for example memory requirements and
DS-FFM the asymptotic divergence of several moments ofnethods for handling histograms. The section also contains a
its statistics, and therefore the divergence of an upper cutoftiescription of the performance analysis of the implementa-
can be shown rigorously. Although this might be consideredion. A parallelized version of the algorithm is introduced
as a sign of criticality, it is far from being a sufficient proof. and discussed in the final subsection.

In equilibrium thermodynamics, “criticality” usually refers
to a divergent correlation lengffi1,12 in the two-point cor-
relation function, which is associated with a scale-invariant A. The model

or power-law-like behavior. This is how the term “critical- A forest fire model was first proposed by Bak, Chen, and
ity” is to be interpreted in SOC: Observables need to be scal@ang[19] and changed later by Drossel and Schw#&hlto
invariant [52], i.e., power laws in the statistics. There arewhat is now known ashe forest fire modelor DS-FFM as
many examples of divergent moments without scale invariwe call it): On a d-dimensional lattice of linear length,
ance, such as the overcritical branching pro¢é8gor over-  each site has a variable associated with it, which indicates
critical percolation14]. the state of the site. This can either be “occupidtty a

Thus, there isa priori no reason to assume that the DS-treg, “burning” (occupied by a firg or “empty” (ash. In
FFM is scale-free. However, there are many numerical studeach time step, all sites are updated in parallel according to
ies that suggest thig6,15,16; one of them, however, sug- the following rules: If a site is occupied and at least one of its
gests the breakdown of simple scalifd7]. Since an neighbors is burning, it becomes burning in the next time
analytical approach is still lacking, numerical methods arestep. If a site is occupied and none of its neighbors is burn-
required to investigate this problem. In this paper, we proding, it becomes burning with probabilify If a site is empty,
pose an alternative, very fast algorithm to simulate the DSi becomes occupied with probability If a site is burning, it
FFM with large statistics and on large scales. The implemenbecomes empty in the next time step with probability 1. As

these probabilities become very small, they are better de-

scribed as rates in a Poisson-like process. From a simple
*Email address: gunnar.pruessner@physics.org analysis, it is immediately cledd5] that the model can be-
"Email address: h.jensen@ic.ac.uk come critical only in the limitpp—0 andf—0. In this limit,

Il. METHOD AND MODEL
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FOREVER { FOREVER {
/* Choose a site randomly */ /* This is just a loop to occupy the
rn = randon site; * right number of sites */
/* If empty occupy with probability p */ REPEAT p/f TIMES {
IF (rn empty) THEN { rn = randomly chosen site;
with probability p: rn=occupied; IF (rn empty) THEN {rn=occupied;}
} ELSE { }
/* If occupied start a fire with probability f */ rn = randomly chosen site;
with probability f: IF (rn occupied) THEN {
burn entire cluster connected to rn; burn entire cluster connected to rn;
} }
} }
FIG. 1. The naive, basic algorithm of the DS-FFM. FIG. 3. The traditional implementation.

the burning process becomes instantaneous compared to gliown in chunks op/f between two lightning attempts. Al-
other processe&ee also Sec. 1 B)2and can be represented though this means that sites become reoccupied only in
by the algorithm shown in Fig. 1. chunks ofp/f, it turns out that apart from peaks in the his-
Compared to the instantaneous burning, both of the regogram of the time series of global densities of occupied sites
maining processes are slow. In Sec. [IB2 it is shown thaf23] the statistics do not depend on these details. In order to
p>1 is required[15] for criticality, so thatf/p<1 and the  5yiq any confusion, all data for this paper have been pro-
algorithm in Fig. 1 can be written as Fig. 2, which is faster y,,.aq by means of the algorithm in Fig. 3. Moreover, this

than' the former, becausg the number .Of random choices 01Ezi\gorithm is much more suitable for parallelizati®ee Sec.
site is reduced, but equivalent otherwise. )

The line “with probability p” makes sure that the occu-
pation attempt still happens with probabilipyand the burn-
ing attempt still occurs wittpf/p=f. Of course, the line is B. Statistical quantities
completely meaningless, because the alternative, which oc-
curs with probability -p, is no action at all. It therefore The objects of interest in the DS-FFM are clusters formed
can be omitted. Then every randomly picked empty site willby occupied sites: Two trees belong to the same cluster if
become occupied, while burning happens with the reducethere exists a path between them along nearest-neighboring,
probability f/p. occupied sites. The cluster in the DS-FFM corresponds to
This rescaling of probabilities is only possible in this form avalanches in sandpilelike mod¢ls. The cluster, which is
if the two processes are independent, which is the case bburnt at each burning step, can be examined more closely, so
cause a new occupation can only occur for empty sites, whilghat various geometrical properties can be determined either
a burning attempt operates only on occupied sites. If botlas averagegsand higher momentsor as entire distribution:
processes were to operate on the same type of site, a redudgidss(in the following, this term is used synonymously with
probability (1+ f/p) ~* would decide between the two alter- size), diameter, time to burn it, etc. The last property is better
natives. expressed as the maximum length for all paths parallel to the
The implementation shown in Fig. @vithout the mean- axes and fully within the given cluster, connecting the ini-
ingless lingé has been used, for example, [i20,21. How- tially burnt tree and each tree within the same cluster. It is
ever, probably for historical reasons, the model is usuallthe maximum number of nearest-neighbor moves one has to
[15,17,22 implemented as shown in Fig. 3, where trees argmake to reach all sites in the same cluster, in this sense a
“Manhattan distance]23]. As trees catch fire due to nearest
neighbors only, this maximum distance is the total burning
time of the entire cluster. In the definition above, the “time
to burn” Ty, becomes a purely geometrical property of the
cluster and therefore independent of the actual implementa-
tion (see Sec. Il CHof the burning procedure.

FOREVER {
/* The following line is without effect */
with probability p: {
rn = randomly chosen site;
IF (rn empty) THEN {
rn=occupied;
} ELSE { 1. Cluster size distribution
with probability f/p:
burn entire cluster commected to Im; The most prominent property of the model, however, is
} the size distribution of the clustens(s), which is the single-
} site normalized number density of clusters of mgs<., the
} number of clusters of size per unit volume. The average
cluster size, i.e., the average size of a cluster to which a
FIG. 2. A faster algorithm, doing essentially the same as the ongandomly chosen occupied site belongs, is correspondingly
shown in Fig. 1. defined as
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time stept+ 1 is drawn randomly from the distribution(s)

z s’n(s) with a probability proportional to the mass of the cluster. The
- (1)  normalization of the distributiosn(s) is given by Eq.(4),
S siis) so that fort large enough, the effect of the initial condition
s can be neglected,
As indicated by the ban(s) denotes thexpectedistribu- (PP(s))=sn(s)/p. (6)

tion, i.e., something to bestimatedfrom the observables. ) ] _

On average, the probability that a randomly chosen site bell the stationary state the average density of irpess re-

longs to a cluster of sizeis thensn(s). If n,(s) denotes the lated tos by [15]

cluster size distribution of the configuration at tirhésee

below), then one expects = _p__
(f/p)p

(n(s))=n(s), 2 . : - .

This equation, as well as E), is strictly only exact if the
where () denotes the ensemble averggs opposed to a density of occupied sites is constant over the course of the
tilde, which denotes the average owv&(s;8)]. Assuming growing phase. For very large system sizes, &g.holds
ergodicity, one has almost perfectly, as shown in Table Ill; however, note the

remarks in Sec. llIA 1.
1 T For a coherent pictur@{(s) is introduced, which is the
T'[nw?zl A (A) (3) histogram ofall clusters, i.e.E P {(s) is the number of clus-
ters in the system at time According to the definition of

for an arbitrary quantityd, measured at each stepf the  N(S), itis
simulation. The limit exists for all bound observables

Regarding the time, it is worth noting that a step in the
simulation is considered completed, ie~t+1, if the ran- 5.4 correspondingly
domly chosen site for the lightning attempt was occupied,
i.e., the attempt was successful, so tlas the number of A
burnt clusters. For sufficiently large systems, the changes of pt:NES sP{(s) 9
the system due to growing or lightning are almost negligible,
a_md so are the differences betwe_en averages taken over gl (p)=p. Since Eqgs(6) and(8) differ on the right-hand
lightning attempts or alsuccessfulightning attempts. Also,  gjge (RHS) only by constants rather than by random vari-

the distributions found directly before and directly afterames, both distributior@?(S) andP{(s) are estimators of

burning tend to the same expect.at|on value for sufﬁuentlythe expected distribution(s). Clearly, the burnt cluster dis-
large systems, see Sec. Il Al. It is noted only for complete

T bray i a :
S . A h h h -
ness that in this paper the cluster size distributigfs) has tribution P(s) IS muc spa_rsert aﬂ?t (.S)’ and the estima
; ) tor for n(s) derived from this quantity is therefore expected
been measured directhfter the burning procedure. There- T L
. . to have a significantly larger standard deviation. On the other
fore, ny(s) does not include the cluster burnt at time step : LS .
. . . ) . hand, its autocorrelation time is expected to be considerably
just like n, 1(s) does not in an implementation, where the a
distribution is measuretieforeburning. smaller than that ofP{(s), because on average onp/f
Introducing +1 entries pp/f sites are occupied in each “growing loop,”
which is repeated on averageplfimes of the latter are
o . changed between two subsequent measurements, corre-
= > sn(s) (4)  sponding to the number of newly occupied sites plus the
=1
. cluster which is burnt down. SdP?{(s) provides a much
as the average density of occupied sites, the expected disttfger sample size, but is also expected to be much more
bution of burnt clusters isn(s)/p. To see this,Ptb(s) is qorrelated. In orFJer tOJudgeawhether it is wise to bspend CPU
introduced, denoting the distribution of clusters burnt in thelime on calculating the fulP((s) rather than onlyP(s), as
tth step of the simulation. This distribution contains only oneWas done in the pa$l5], these competing effects need to be
nonzero value for each namerP{’(s)zl for the sizes of  considered by calculating the estimate for the standard de-

the cluster burnt at time, and P2(s)=0 for all others. viation of the estimator ofi(s) from both observables,
Therefore ’ ! which is discussed in detail in Sec. IID.

_
)

(PE(s))=Nn(s), 8

2. Time scales

N
21 Ps)=1, (5) In order to obtain critical behavior in the FFM, a double
. separation of time scales is requirgdt],

whereN is the number of sites in the system, aNe-LY, iy
which is also the maximum mass of a cluster. Since the site f<p< i (10)
where the fire starts is picked randomly, the cluster burnt in '
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with some positive exponent’. The left relationf<p, en-  as obtained in percolatidi4] is reasonable fos larger than
tails f/p—0 and thereforg¢10) entailsp—0 andf—0. This  a fixed lower cutoff. In the following, the additional param-
is also the case for eter#in n(s; 6) is omitted, whenever possible. The quantity
So( ) is the upper cutoff and is supposed to incorporaté all
f<p<1, (1)  dependence of the distribution. It can be shown eddi}
that the second moment of's; 6) [see Eq.(1)] diverges in
and therefore leads to the same prescription to drive the syshe limit #—~0 andL—, so thats, must diverge withd
tem, however10) entails(11) but not vice versa. This can be — 0. Here,G(x) plays the role of a cutoff function, so that
seen by noting that(10) entails the nontrivial relation lim,_..G(x)=0 and falls off faster than any power =ffor
p1+1xy'<f<p. Some authors, however, just statél) large x, because all moments ofs; §) are finite in a finite
[4,17]. The three scales involved are due to three differensystem. For finitex, G(x) can show any structure and does
processes and their corresponding rates. not have to be constant. However, assuming, limn(s; )

(i) The time scale on which the burning happens, the typifinite, G(s/s,) can be regarded as constantsrfor suffi-
cal time of which is handwavingly estimated as the averageiently larges,, so thatn(s;#) behaves like a power law,
number of sites in a burnt clust& p/f. Amore appropriate s~ 7, for certains. However,a priori it is completely un-
assumption is that the typical burning time scales like a&nown whethess, is large enough in that sense, and timdy
power v of the average cluster siz84]. This should be dis- way to determiner directly fromn(s; 6) is via data collapse.
tinguished from the scaling of thaveragetime it takes to |t is already known that “simple scaling’12) does not apply
burn a cluster, because thypical time represents the char- in the presence of finite-size effed2].
acteristic scale of the burning time distribution, which might  The assumptiori12) states that the FFM is scale-free in

be very different from its average. o the limit so(#) — and definesthe exponentr which char-
(i) The time scale of the growing, which ispl/ acterizes the scale invariance. One cannot stress enough that
(iii) The time scale of the lightning, fL/ with the breakdown of Eq(12), the proposed exponent is

Burning must be fast compared to growing, so that clusundefined, unless a new scaling behavior is proposed. It has
ters are burnt down before new trees grow on the ef#s  been pointed out that E§12) certainly contains corrections
i.e., (p/f)” <1/p or (f/p)” >p. In order to obtain diver- [25]. This asymptotic character of the universal scaling func-
gent cluster sizes, growing must be much faster than lighttion is well known[26] from equilibrium critical phenomena.
ning, i.e.,p>f. Thus, the double separation reads as stated While Grassberger concludes that the angb#z “cannot
in (10). By making the burning instantaneous compared tde correct’[17], this is rejected i122]. However, the latter
all other processes, the dynamics effectively loses one timauthors do not actually investigagx) and simply plot their
scale. In this case, the rateandp, measured on this micro- estimate ofsn(s; #) versuss/sy(6). In the results section, it
scopic time scale, vanish, i.ei=0 andp=0, so that the is shown that there is no reason to believe that(Eg). could
right relation of(10) is perfectly met, provided that/f does  hold in any finite system.
not vanish. However, the ratiidp remains finite and<p is
still to be fulfilled. A finite f/p means that one rate provides 4. Other distributions

a scale for the other. Measuring the rates on the macroscopic The exponentr as defined in Eq(12) can be related to
time scale, defined by the sequence of burning attenfipts, exponents of other assumed power laws. To this end, the
becomes 1 in these new unities apdecomesp/f=6"".  (jstribution P(s, T, ;6) is introduced, which is the joint
The notationg=f/p corresponds t¢4], which is, unfortu-  probability density functioiPDF) for a cluster burnt to be of
nately, the inverse ob) used in[17]. Equation(10) then  masssand burning timesee Sec. Il BTy, at givend. Then
means¢—0. At first sight, this result seems paradoxical, it is possible to define conditional expectation value§2a
since =0 is incompatible with instantaneous burning’s

compliance withp< 6" . However, this problem does not Coy— Dl .

appear in théimit 6—0. In a finite system, one cannot make B(s|Tw:0) SE S'P(S". Tw:0). a3

0 arbitrarily small, as the system will asymptotically oscillate
between the two states of being completely filled and com-
pletely empty. On the other hand, for fix@dand sufficiently
large system sizes, a further increase in system size will
leave the main observables, such @sand P? (see Sec. Moreover, it is clear than(s; 6) is just a marginal distribu-
[IB1), essentially unchanged. These asymptotic valuegjon, i.e.,
namely the observables at a givérin the thermodynamic

limit, are to be measured.

E(Tuls;0)=2 TyP(s,Tiy: ). (14)

ST(s; 0)= 2, P(s,Tjy;0)=Py(s;0). (15)
3. Scaling of the cluster size distribution Tu

Assuming that finite-size effects do not play any role, i.e.,In the assumed absence of any scale, it is reasonable to de-
for @ not too small, the ansatz fine for the distribution ofT,, similar to Eq.(12),

n(s; 0)=s""G(s/sy(0)) (12) Pr,(Tm §9):Tn7|bgTM(TM ITw,(6)) (16)
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and for the relation betweds(s|Ty,) and Ty,
E(s|Tw)<THy - (17)

To avoid confusion, it is important to keep in mind that the
absence of scales is not a physical or mathematical necessity:
The system could as well “self-organize” to any other, suf- f
ficiently broad, distribution that could have an intrinsic, finite
scale, i.e., a natural constant characterizing the features of
the distribution. This looks much less surprising considering
the fact that standard models of critical phenoméh2l,
such as the Ising model, possess such a scale everywhere
apart from the critical point.

An additional assumption is necessary in order to produce
a scaling relation,

E(Tuls) 1

Pr,(Tm; 0)dTy=P(E(s|Ty); )d(E(s|Ty ;6)), (18)

. o FIG. 4. A schematic joint PDP(s, Ty, ;6). The gray shading is
where Py~ and Ps denote the marginal distributions of seq to indicate the density and the straight lines indicate roughly
P(s, Ty ; 0), which leads—assuming sufficiently larggand  the limits of the distribution. While a narrower distribution would
TMO—to most easily obey Eq18), it does not necessarily have to be sharply

peaked. In this example, the weighted areas of the horizontal and
b=1+u'(7—2) (19 the vertical stripes might be the same. They cross at the conditional
averages.
using Ps=sn(s;#) and Eq.(12). Equation(18) is based on
the idea that a cluster requiring burning tiffig is as likely ~ So(#) need of the ordeT, time to burn. In that case, one
to occur as a cluster of the si_ze c_orresponding to Fhe averaggysp. (T, :0)dTy= P.(So:6)ds, and asT,, ocsg'“, one
taken conditional to the burning tin1g, . If the distribution h M EO 16) and (12 0
P(s, Ty 6) is very narrow, such thd&(s|Ty,) is virtually the as using Eqs(16) and(12)
only value ofs with nonvanishing probability53], this con- "
dition is met. However, the distribution can have any shape (1-b)—=2—71 (24)
and still obey the assumption, as illustrated in Fig. 4. A
Scaling relation(19) can only be derived via Eq.18),
which cannot be mathematically correct, Bg is actually
only defined for integer arguments, while in gendzés|T\,)
is not integer valued. However, the scaling relation might

corresponding to Eq.19) with Eq. (23).

C. The implementation

hold in some limit. In this section, a new implementation of the DS-FFM is
The exponent defining the divergencesgfin Eq. (12) is  discussed. An implementation especially capable of handling
defined as large scales has been proposed by Hone[&&} earlier. Its
most prominent feature is the bitwise encoding of the model,
So()=06"", (200 which significantly reduces memory requirements. Some of

the properties investigated profit from this scheme of bitwise
encoding, because bitwise logical operators can be used to
determine, for example, correlations and operate on entire
words “in parallel.” However, in this implementation it
would have been inefficient to count all clusters, ir&s) is
The corresponding exponent fk, in Eq. (16) is determined viaP"(s) rather tharfP*(s).

0 In contrast to standard implementatidi$,20,23, where
n(s) is derived fromPP(s), the philosophy of the imple-
mentation presented in this paper is to coalhtclusters ef-
, ficiently by keeping track of their growing and disappear-
The assumptiorTMozE(TM|so)ocs(1)’“ then gives the scal- ance, so thaf(s) is derived fromP?(s). By comparing the

leading together with Eq$1) and(7) to the scaling relation
[24]

AN3—1)=1. (21)

Tu (0)=0""" (22)

ing relation standard deviation of the estimates, and the c¢€BU
time), the efficiency is found to be at least one order of
, A magnitude higher. At the same time, the complexity of the

v Tul (23 algorithm is essentially unchanged, naméy6~*log(N))

instead of O(#~ 1), while a naive implementation of the
It is interesting to note that this assumption is consistent witttounting of all clusters is typically of ordgd(N). In the
the assumption that clusters that have a size of the orddollowing, the algorithm is described in detail. Because of its
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(@ FIG. 6. The treelike structure of the largest cluster in Fig. 5.

FIG. 5. All occupied sitesblack on the lattice point to a rep- recently been used to simulate percolation efficiently for
resentative. The site pointing to itself is the root of the cluster. The y P y

site shown in light gray is the one which is about to become occuMany different occupations densitig29]. The method de-

pied, as shown in Fig. 7. The labels on the sites are just to uniquelyC'io€d in the following differs froni29] by not only grow-
identify them in other figures. ing clusters but also by removing them. While one of the

main advantages of the original Hoshen-Kopelman algorithm
) i . is its strong reduction of memory requirementsaeL%"1),
close relation to standard percolation, the algorithm preye gigorithm described here only makes use of the data rep-
senfceq below is algo applicable for this cla§3|cal prqblem Ofesentation proposed by Hoshen and Kopelman, so that the
statistical mechanics. In fact, the percolapon algqr|§hm '€ memory requirements are stli(LY).
cently proposed by Newman and Zji9,3Q is very similar. In the following, the technique of how to create and to
Based on many pr!nC|pIes p_resented in thl_s paper, an asyRpqate the clusters is described in detail.
chronously parallelized version for percolation has been de- Starting from an empty lattice, the first site becomes oc-
veloped recently31]. cupied by setting the state variable. Since this site cannot be
a member of a larger cluster, its representative is the site
itself. Therefore, the mass variable must be set to 1. The
Usually each site is represented by a two-state variablesame pattern applies to all other sites that get occupied, as
which indicates whether the site is occupied or empty. Thdong as they are isolated. The procedure becomes more in-
variable does not need to indicate the state “burning,” be-volved when a site induces a merging of clusters. This is the
cause the burning procedure is instantaneous compared to alise whenever one or more neighbors of the newly occupied
other processes and can be implemented without introducingjte are already occupied. In general, the procedure is then as
a third state(see Sec. IICH In order to keep track of the follows: (i) Find the root of all neighboring clustersii)
cluster distribution, each site gets associated two further varieject all roots that appear more than once in order to avoid
ables(in an actual implementation, the number of variablesdouble counting(iii ) identify the largest neighboring cluster;
can be reduced to one, see Sec. I)C@e which points (iv) increase the mass variable of the root of this cluster by
(depending on the programming language either directly athe mass of all remaining clustejignoring those which have
an address or as an indeto its “representative” and one been rejected aboy@lus one(for the newly occupied sije
which contains the mass of the cluster to which the given sitév) bend the representative pointers of the roots of all re-
is connected. The representative of a site is another site @haining clusters to point to the root of the largest cluster
the same cluster, but not necessarily and in fact typically notthis keeps the tree height small, see betoand (vi) bend
a nearest neighbor. This is shown in Fig. 5. If a site is emptythe representative pointers of the newly occupied site to
the pointer to a representative is meaningless. The pointer gfoint to the root of the largest cluster.
representatives forms a treelike structure, because represen-This procedure is depicted in Fig. 7, illustrating the join-
tatives might point to another representative, as shown iing of the clusters shown in Fig. 5. As an optimization, one
Fig. 6. A site which points to itself and is therefore its own could also bend the pointer of site 6 to point to site 3, which
representative is called a “root” site, since it forms the rootwould effectively be a form of path compression. However,
of the treelike structure. Only at a root site is the secondas shown below, the trees generated have only logarithmic
variable, denoting the mass of the cluster, actually meanindaeight, so that the path compression possibly costs more
ful and indicates the mass of the entire cluster. Each cluster EPU time than it saves for system sizes reachable with cur-
therefore uniquely identified by its root site: Any two sites rent computer§54]. It is important to note that only the root
that belong to the same cluster have the same root and vie# the largest cluster is not redirected.
versa. By construction of the clustéshown belovy, it takes To find the root of a given site, which is necessary when-
less thanO(log N) to find the root of any site in the system. ever clusters are considered for merging, an algorithm like
The algorithm is a dynamically updated form of the the one shown in Fig. 8 need3(h,,(M(C))) time (worst
Hoshen-Kopelman algorithr{82]. The same technique has case, whereh,,(M(C)) is the maximum height of a cluster

1. Tracking clusters
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Q O O /* Find the root of the cluster identified
by start_index.

* All sites are expected to have a pointer to their
* representative in the array pointer_of. The result
O * is stored in index. */
index = start_index
WHILE ( index != pointer_of[index] ) {

O O index=pointer_of [index]; }

FIG. 8. The find root algorithm. All sites are expected to have a
pointer to their representative in the array pointdt The result of

Q this procedure is index.

ing, this representation is used. By construction, if at least

two trees join, the resulting tree has either the height of the

FIG. 7. The configuration in Fig. 5 after occupying the high- tree representing the largest cluster or the height of any of

lighted site. Sites, the pointer of which have been changed, arthe smaller trees plus one—whichever is larger. Thus, by
shown in dark graysites 7 and 2 construction,

hn(M)=h,(M") for any M=M', (25
containingM (C) sites,C being the cluster under consider-
ation. so in order to find the maximum height of a tree of miks
All clusters are constructed by merging clusters, whichone has to consider the worst case when the smaller trees
might often involve single sites. These clusters are reprehave maximum height. For a given fixéd, this is the case
sented as trees, like the one shown in Fig. 6. In the followwhen only two clusters merge, so

hpn(M)<maxmax{ h,(M—M")|0=sM'<|M/2]], maf1l+h,(M")|0=M’'<|M/2]]), (26)

where| M/2] denotes the integer part 8/2=0, which is the maximum size of the smaller cluster. The outer max picks the
maximum of the two max running over all allowed sizes of the smaller cluster. U2B)g

hn(M)<maxhy(M —1),1+hy(IM/2])) (27)
so that
1+h,(IM/2]) for 1+h,(M/2)=h,(M—1)
ho(M)<{ ™ " " " (29
hp(M—1) otherwise.
|
With h,,(1)=1, one can see immediately that As the tree constructed is directed, there is no simple way
to find all sites which are pointing to a given site. This means
hn(M)<[log,(M)] (29 that splitting trees is extremely expensive in terms of com-

plexity. However, in the DS-FFM, trees do not get removed
by induction, noting thaflog,(M/2)]=[log,(M)]—1, where individually, but always as complete clusters. Thus, no part
[a]=|a]+ 1 for anya=0. Hence, of the tree structure needs to be updated during the burning

(see Sec. lICH

hin(M) € O(log(M)), (30 : ,
2. Reducing memory requirements

which is therefore théworst casg complexity of the algo- The three variabletstate, pointer, siementioned above
rithm. It is worthwhile noting that all the algorithms consid- would require a huge amount of memory: At least a bit for
ered are just one solution of the more general union{@amdl  the statgbut for convenience a bytea word for the address,
also insert problem[33]. and a word for the masgctually depending on the maxi-
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void *start_pointer, *root, *content;

M

/* start_pointer is the address of the site, the root of which

* i3 to be found. root will always point to the site currently

bN * under consideration, while content is always the address

* root is pointing to.

* The macro IS_SIZE verifies, whether the value given is a size. */

FIG. 9. The memory layout when using addresses as pointers tc
representative. The hatched area is used for valid addresses; wh:
remains can be used to represent cluster masses, i.e., if the value ¢* Initialise: Assume that start_pointer is the root and

an address points into the white area, the value is interpreted as i * read its content. #/
mass for (content=+((void **) (root=start_pointer));

/* Test whether root’s content is actually a size. */

mum size of the clustersHowever, as the pointers are only (115_SIZE(content)) ;

meaningful if the site is occupied, the representative pointer
can also be used to indicate the state of a site: If it {810
NULL if it is an addresy the site is empty and occupied
otherwise.

As mentioned abovéSec. IIC 1, the mass variable is
meaningful only at a root site. Since only a certain range of
pointers is meaningful, the remaining range can be used to FIG. 10. An implementation ofind_root in c using pointers
indicate the mass of a cluster. Assuming that indeces cai® void .
only be positive, negative numbers for the value of the o ] )
pointer can be interpreted as self-references and their modu- [N € it is reasonable to represent the sites as voihd
lus as total mass of the cluster. The concept is restricted tierpret these as pointers to other sites, i.e., veidso that
system sizes that are small enough that the space not occlfil€ [00p to search for a root just becomes the code shown in
pied by meaningful pointers is large enough to store the mags'd- 10- _ . _
information. How large is the maximum representable sys- Representing each site by a word instead of a byte or even
tem size(not to be confused with memory requirements,@ it [28] still leads to reasonably small memory require-
which is N times word siz§? For a word size ob=4 byte, ~Ments for typical system siz¢for instance, a system of size
i.e., M=2% representable values in a word, the maximumN=4096x4096 would require 64 megabyjesSince the al-
system size iN=231—1, namely—1---—N values for in- gorithm has an alr’_nost random memory access pattern, it is
dicating masses,-1-N for indices, and 0 for the empty site, NOt réasonable to implement it out of cdi@4]. In order to
summing up to X+1<M, which is overruled by the S|mula_1te even larger sizes, the_ fo!lowmg representation has
memory requiredbN<M, asM is (usually the maximal bee_n |mp_lem_enteq: At _the beginning of the S|mu_lat|pn, the
addressable memory for a single process. entire _Iattlce is spllt.ted in cells so that whatever site in such

When using addresses as pointers, it is less obvious hofy C&ll iS occupied, it must belong to the same cluster as any
to identify the range of meaningless pointers which could bé)ther occupied S|t§ in the same cell, ie., ea}Ch site in the cell
used to store the mass information. In order to distinguishS the nearest neighbor of all other sites in the cell. On a
quickly whether a given value is an address or a mass, thgypercubic lattice these cells have size 2, as depicted in Fig.
most obvious way is to use higher bits in the pointers. What-1- Each site within such a cell must belong to the same
is the range of meaningless addresses? The addresses Siter if it is occupied. Therefore, only one pointer is nec-
words, occupyingoN bytes. If each byte is individually ad- ©€SSary to refer to its representative. On a.trlangular lattice,
dressabléas usual, their value differs by, i.e., they span a these cells would have size 3. Since a pointer can be non-
range ofbN different values. As shown in Fig. 9, the largest
remaining continuous chunk of values, not used for refer- i W iy
ences to representatives, has therefore at least[6Me EOE i
—bN)/2]=(M —bN)/2, assuming that the pointer values ! L n b
used, which is also the range of addresses where they are ' O: ! O: :O: :O '
stored, spans a continuous range. If ke 1 different clus- F A AN P A
ter masses are to be represented as pointer values pointing IO N
into the meaningless region, one has N<(M—bN)/2, 'OE EOE

[ |

/x Iterate: content is not a size, so the next candidate
* 13 what root is currently pointing to.
* Content is updated accordingly. */

content=+((void **) (root=content)));

A

i.e., (b+2)N+2=<M. If they do not have to be continuous, f
the condition is relaxed: £+ N<M —DbN. Alternatively one i O x O i
can make use of the lower bits: If the pointers point to words NN\
in a continuous chunk of memory or at least are all aligned in !

the same way, then all pointers are identicabdb), i.e., all FIG. 11. If occupied, each site within a dashed box belongs to
pointersp obeyp=c (modb), where G<c<b is a constant.  the same cluster. On a triangular lattice the dashed patches would be
Sinceb>1, one can us@#c (mod b) to indicate that a triangular, each one containing three sites. The thick dashed line
given pointer value is to be interpreted as mass, which cashows the orientation of the boundary between two consecutive
easily be calculated via a bit-shift. slices in the parallelized code, see Sec. Il E.
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null, although not all sites in the cell are occupied, a new
variable must represent the state of the sites in each cell,
not lower or higher order bits of the pointers can be useg
above. On the hypercubic lattice, the memory requirement
is therefore for each pair of sites 2 bit for the state and 1
word for the address or index of the representative. Storini
the 2 bhits in a bytgand keeping the remaining 6 bits un-
used, the memory requirements are therefore reduced ti
(b+1)N/2 bytes. Using indices, the maximum representable
system size is given by 3+1<M, and using pointers
with a size identification as shown in Fig. 9, the constraint is
1+N=<[M—(bN/2)]/2 in the worst case.

3. Efficient histogram superposition

So far, only the maintenance of the cluster structure ha
been described. Since the masses of all clusters involved a
known, it is simple to maintain a histogram of the cluster
mass distribution: If a cluster of sizeis burnt, the corre-
sponding entry inP(s) is decreased by one. If a cluster
changes sizeP{(s) is updated accordingly. For example,

PHYSICAL REVIEW E 70, 066707 (2004

/% Initialise current_stack. */
CLEAR current_stack;
/* Put initial site on current_stack. */
PUT rn ON current_stack;
/* Sites are cleared right after they have entered the current_stack. */
rn = empty;
/* The first loop runs until there is nothing left to
* burn, i.e. next_stack was not filled during the inner loop. */
po {
/¥
CLEAR next_stack;
/* The next loop runs as long as there are sites left to burn
* in the current generation of the fire. */
WHILE current_stack not empty {
/* GET: remove the upmost element from current_stack and

Clear nezt_stack so that it can get filled in the next loop. */

* put it in = %/
GET x FROM current_stack;
/* Visit all neighbours #/
FOR all neighbours n of x {
if (n occupied) {
/* Put occupied sites on the current_stack of the next
* generation of the fire »/
PUT n ON next_stack;
n = empty
}
}

When tWO C|USterS Of Slzel andSZ merge asa partICL”ar SIte /* The next current_stack to be considered is next_stack. */

is newly occupied during the growing procedufs(s,) and
Pi(s,) are decreased by one ar@(s;+s,+1) is in-
creased by one.

Naively, the average cluster size distribution is the averjmplementation,

age of Pi(s), i.e.,

t
> PL(S), (31)
t'=1

current_stack = next_stack;
} WHILE current_stack is not empty

FIG. 12. The burning procedure starting at rn. In an actual
the  copying of next _stack to
current _stack can easily be omitted by repeating the code
above withcurrent _stack and next _stack interchanged,
similar to a red-black approadi34].

ing point numbers are used to store the histogram and the

with T the number of iterations. Depending on the resolution?ccuracy is so small that changes in the sum by 1 do not
of the histogram, it would be very time consuming to calcu-change the result anymoii®5]. The maximum value in

late this sum for each Using exponential binningwvhich is
in fact a form of hashingin order to reduce the size of the
histogram solves the problem only partly.

Ignoring any hashing, a naive superposition, where eac

P(s), where this does not happen, is given by the largest
with m+1#m, wherem is a variable of the same type as
Pi(s). For floating point number, the value ofis related to
the constant DBLEPSILON (or FLT_EPSILON for single

slot in the histogram needs to be read, has complexitprecision, which essentially characterizes the length of the

O(TH), whereH is the largest cluster mass in the histogram.

mantissa. The concrete value af is actually platform-

This problem is solved by noting that early changes in thePrecision-, and type-dependent. For an unsigned integer of
histogram propagate though the entire sequence of hist&ize 4, this value would be 2-1)—1, corresponding

grams. Denoting the initial histogram a®§(s) and
APE(s)=P{ 1(s)—Pi(s), then

t

PAs)=Pi(s)+ > AP(s), (32)
t'=1
and therefore
T T
tEl PAs)=TPA(s)+ >, (T-t'+1)AP(s). (33
= t'=1

By using this identity, only the right-hand side of E§3) is
maintained by increasing it by —t+1 when a new cluster

to ULONG_MAX —1; for double precision |IEEE75
floating point numbers, this value is
FLT_RADIX** DBL_MANT_DIG—1, i.e., 2°—1.

Provided that the right-hand side of E&3) is below the
thresholdm discussed above for al| this means that only a
single histogram needs to be maintained. It is initialized with
TP§(s) and updated with= (T—t+1) at time steft, when a
cluster of sizes appears or disappears. It is worth mentioning
that this concept obviously even works in conjunction with
binning (or any other hashing

4. Implementation of the burning procedure

The burning procedure was implemented in the obvious

is created at timé and by decreasing it by the same amountway, without making use of the tree structure, as shown in
when it is destroyed. In this way, the complexity is only of Fig. 12. Although the burning procedure could also be imple-
order O[T(# '+1)], according to the number of clusters mented explicitly recursively, it is of course significantly

created and destroyed, i.e., the number of changes in thaster when implemented iteratively. The usage of a stack in
distribution. This concept only becomes problematic if float-the procedure might be thought of as reminiscent of the un-
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TABLE I. Performance data for different parameters and setups.
“ap3000,2” denotes a parallel run on two nodes on an AP3000,
accordingly “ap3000,4”. “cluster,10” denotes a cluster of 25 Intel
machines, connected via an old 10 MBit network, “cluster,100”
denotes the same cluster on a 100 MBIt network. “singlel” and
“single2” denote two different types of single nodes. The largest
fire front f .., was only measured on these systems. The quaftity
is the ratio of the average timeeal time on the parallel systems in
order to include communication overhead, user time on single
nodes for one successful update during statistics, i.e., when all data
structures need to be maintained, and equilibratteamsient, i.e.,
when the standard representation is used.

System L 0t L f max
ap3000,2 8000 4000 1.51
‘ ° ° ap3000,2 8000 8000 1.52
ap3000,4 16 000 4000 1.34
FIG. 13. The burning order for a>66 patch of sites, where ap3000,4 16 000 8000 1.48
seven sites are not occupied and form a barrier, such that some sitep3000,4 16 000 16000 1.37
behind it burn later, together with the fire front propagating awayap3000,4 16 000 32000 1.41
from the starting point of the fire at the lower left-hand corner. Theg|yster,10 32000 4000 2.71
sites belonging to the largest set of trees burning at the same t'“ﬁuster 10 32000 64000 381
are shown in light gray, unoccupied sites are shown in white, occuCluster 100 32000 32000 1.76
pied sites in black. The numbers indicate the generation of the fire nalel 1000 500 141 216
which is one plus the Manhattan distance from the starting point oF gl 1 2000 1000 1'41 396
the fire along occupied sites.- )
smglel 4000 125 1.42 106
) . . singlel 4000 250 1.47 172
derlying recursive structure. The number of times the outegInglel 4000 500  1.48 255
loop in Fig. 12 runs defines the generation of the fire front singlel 4000 1000 1'53 317
and givesT), ; other properties of the burnt cluster can be _. ’
inglel 4000 2000 1.50 518
extracted accordingly. The most important resource requwea
nglel 4000 4000 1.57 646
by this procedure is the stacks: one for the currently burnin o1 4000 8000 148 907
sites and one for the sites to be burnt in the next step. The |e :
is no upper limit known for the number of simultaneously S"9'e1 4000 16000 1.45 1327
burning sites, apart from the naiW/2 on a hypercubic lat-  Sin9le2 8000 4000 2.11 687
tice, which comes from the observation that sites which beSingle2 8000 8000 211 912
8000 16 000 2.09 1415

long to the same generation of the fire must reside on th&ngle2

same sublatticéeven or odgl

On the other hand, it is also trivial to find the maximal
number of sites which burn at the same time, if the fire start
in a completely dense forest, i.e., in a lattice wjk1.
Obviously the size of thdéth generation is then given by
4(t—1) fort>1 and 1 at the beginning= 1. Since the sum

{icient, i.e., use hard-disk space to maintain it. In fact, this is
what de factohappens if one uses a stack of si¢& on a
virtual memory system.

of these numbers is the number of sites reachable within a
certain timet, the sumis also an upper limit for the number

5. Complexity of the algorithm
The overall complexity of the algorithm has two contri-

of simultaneously burning sites. Indeed, the actual numbebutions: The “growing” part, where new clusters are gener-
can easily be larger than & 1), caused by arrangements of ated from existing ones, and the “burning” part. The time

wholes in the lattice, which delay the fire spreading at certaimeeded for the burning part is proportional to the number of
sites so that they burn together with a larger fire front. Suctsites burnt and therefore expected®&) [see Eqs(1) and

a construction is shown in Fig. 13.

(7)] andO(N) in the worst case. Singein Eq.(7) is bound,

Of course it is neither reasonable nor practically possiblehe complexity of “burning” is O(6~ 1) (expected The
to provide enough memory for the theoretical worst casecomplexity of “growing” is estimated by the average num-
i.e., two stacks each of si2¢/2. Indeed the typical memory ber of sites newly occupied), ?, times the worst-case com-

requirements seem to be of orde(\/6~ 1), as shown in

plexity (30) to find the root of any given site, because up to

Table |, wheref ., denotes the largest fire front observed four roots need to be found at each tree growing. According
during the simulation. Providing stacks only of sizé 4 to Eq.(30), the worst-case complexity to find the root of any
turned out to be a failsafe, yet pragmatic, solution. Formallygiven site isO(log(N)), leading to an overall complexity for
one could implement a slow out-of-core algorithm in the rare*growing” of O(log(N)¢~)D>0(671). In practice, the loga-
yet possible case in which the memory for the stack is insuffrithmic correction is negligible, especially since 1dj(is an
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extreme overestimate of the average case and therefore esdarge correlation time, because “only '+ 1 entries are
sentially the same runtime behavior is expected for both proehanged between two subsequent histograms.
cedured30]. Implementations like the one [28] avoid this The correlation function is calculated in the symmetric
logarithmic factor by counting only the burnt cluster and way as proposed if87], here for an arbritrary quantit; ,
therefore arrive at an overall complexity 6f( 6~ 1).

The algorithm presented has therefore only a negligibly an (AAG ) T-v = (ATt (A ) T-t @7
higher computational complexity compared to implementa- v (A2 r—(A)? '
tions which measure onl°. This is corroborated by the
comparison of the CPU time per burnt cluster during equili-where ( )1_;, denotes the average taken over tim&om
bration, i.e., the transient, when the cluster structure does not=1 to t=T—t’. The quantity <1> was fitted to
need to be maintained and the algorithm used is the standagkp(—t/7,) in order to find the correlat|on time,. The re-
implementation, to the CPU time per burnt cluster duringsults are given in Table II.
statistics, i.e., when observables are actually measured and As described in Eqs(6) and (8), the two estimators for
especiallyP? is produced. This ratio is shown gsn Tables  Tn(s) differ slightly. However, except fon(s), only constant
| and I1. It varies only slightly withL or 1. values appear on the RHS of Ed$) and (8), so that the

Apparently the algorithm presented offers more statisticsyelative errors of PP(s) )+ and(P2(s))t are also the relative
however it suffers from one limitation: It requires abott ( errors of the estimators far(s) derived from them. These
+1)N/2 bytes of memorysee Sec. Il CR compared tdN/8  relative errors are shown in Table Il as well. Their ratio is
bytes in bitwise implementations like8], i.e., typically a  given asa and is an indicator for the advantage of the algo-
factor 20 more. In order to ascertain whether this disadvanrithm proposed. If the relative error is to be improved by a
tage is acceptable with respect to the statistical gain, one hagctor g, one needs to invest? CPU time, i.e., if the algo-
to determine the standard deviations of the calculated quagithm proposed in this paper costs a factanore CPU time,

tities for both implementations. and the gain in the relative errar, the total gain isa®/{.
The values for this quantity are also given in Table II.
D. Calculating the standard deviation According to the table, for fixed, relative errors and the

correlation times are only weakly affected by an increase in
necessary to estimate the standard deviation of the estlmator¥3t%m S'fz e. At first sight, this is counterintuitive, as the
for i(s) produced by thenids,36), number of passe0,21], i.e., the mean number of times a
site has been visited between two lightnings, decreases in-
) 2pr+ 1 versely p&oportional to the total number of sites in the sys-
Ton(S)=——— ————[(PP(s)®)—(PP(9))?], tem: 1/(@pL?), see Sec. Il B. Assuming that this number is
essentially responsible for the error suggests keeping the
number of passes constant among diffelentiowever, this
27patl [(P2(s)2)—(P¥(s))?] (34) is apparently not the case, possibly because of self-averaging
T-1 t t ' [38] effects.
The table also shows various tendencies, which are worth
Here mp» and 75 a are the correlation times of the two quan- mentioning. First of all, the total gain becomes smaller for
tities. Calculating the correlation time in the standard fashiorarger avalanche size The B in front of some of the values
by recording the history?3(s) andP?(s) for eachswould indicates that a bin around tisevalue was investigated, i.e.,
mean storing millions of floating point numbers. Therefore, itthe time series of
was decided to restrict these calculations to just a small yet

In order to compare the two algorithm rigorously, it is

0‘72351(5)2

representative set afvalues. The result shows that the stan- 2 pab(sy (39)
dard deviation does not fluctuate stronglysin JeB
Because of the special form ®f°(s) € 0,1, its variance is ) ) )
particularly simple, was considered, wherg is a set of(consecutive s values,
representing the bin. For larger values ofthese sets get
<PF(S)2>:<7JF(S)> (35) exponentially larger, which is necessary for a reasonably

large number of events as a basis for the estimators. The
general tendency that the proposed algorithm is even more

so that efficient at smalk is not surprising®® samples fronsn(s),
o ot 1 while P2 samples only fromn(s), i.e., P? “sees” larger
U; o(S) = L ( b 5)>[1_<73$(5)>]_ (36)  Cluster more oftenNevertheles$? is still advantageous by
T-1 roughly a factors. The empty entries in Table Il are due to

numerical inaccuracies or simply missing simulations for
The correlation time oP{(s) is expected to be extremely certain parameters. Some entries are estimated and marked
small, not only on phyS|caI grounds—a cluster can only burmas such.
down once—but also because of the extreme dilution of There is an additional correlation not mentioned so far:
PP(s), as was described in Sec. IIB 1. For fixgdmost of  The individual points in the estimator of the distributi®/?
thePtb(s) are 0. In contrast, th®{(s) are expected to have are not independent. There are “horizontal correlations,” i.e.,
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TABLE II. Correlation timesr, and 7, of the corresponding observabl®® andP? as a function ok
and for different parameters, 6~ 1. Values ofs marked by ‘B” are results for bins around ths value
indicated. For each set of parameters, the quagtigygiven. It denotes the ratio between the average CPU
time for one successful update during equilibratipansient and during statistics, see also Table I. The two

fractions \/Uf,b(s)/@{’(s)), \/Uf,a(s)/@?(s)) their ratio @ and a?/{ are derived. A* marks cases where
7(S)=0 has been assumed. Amarks values ofr,(s), which have been extrapolated fronf(s) for

smallers.
Voou(s)  ora(s)
L o1 ¢ s w(s)  m(s)  (PUS)  (PRS) 2l
4000 4000 1.57 10 0.0138
100 0.170 23.6 0.0637 0.00099 643 2633.4
B10° 0.028 14.2 0.0450 0.00191 236 354.8
B 10" 0.006 10.0 0.0412 0.004 70 8.8 49.3
B 10° 7.2 0.0662  0.02104 3.1 6.1
4000 16000 1.45 10 0.013 39.9 0.0141 0.00056  25.4 444.9
100 0.126 28.8 0.0608 0.00127  48.0 1589.0
B 10° 0.006 4.7 0.0457 0.00175 26.1 469.0
B 10" 0.013 2.9 0.0512 0.00332 154 163.6
B 10° 2.2 0.0433 0.007 95 5.4 20.1
8000 1000 10 0.131 0.0154
100 0.122 284.6 0.0602 0.00158 38.1
B10° 0.028 236.5 0.0399 0.00337 11.8
B10* 0.016 1635 0.0397 0.00878 4.5
8000 4000 2.11 10 0.122 78.2 0.0154 0.00052 298 420.9
100 0.132 16.4 0.0634 0.00087 729 25187
B10° 0.022 8.2 0.0438 0.00147  29.7 418.1
B 10" 0.005 5.5 0.0442 0.00241 183 158.7
B 10° 4.2 0.0409 0.01006 4.1 8.0
B 2x10° 3.8 0.063%  0.02055 3.1 4.6
8000 16000 2.09 10 262.5 0.0#39 0.00068 205 201.1
100 0.131 56.1 0.0629 0.00087 72.0 2480.4
B10° 0.014 19.0 0.0467 0.00115  40.6 788.7
B 10" 0.009 11.1 0.0503 0.00296  17.0 138.3
B 10° 0.006 8.3 0.0411 0.006 89 6.0 17.2
B 2x 10° 7.5 0.0423  0.009 47 45 9.7
B 5x10° 7.0 1.1106  0.33331 33 5.2

P3(s) is correlated for different values sf These are addi- PP, which is, however, diluted so enormously that it influ-
tional correlations due to clusters of small sizes, which areences the outcome only in an insignificant way.

likely to grow and propagate throughin P{(s) for consecu- The horizontal correlations could be estimated using a
tive time steps, i.e., jackknife schemg39], similar to that used to calculate the
error bar of the exponent from the time evolution of a
quenched Ising modé#0]. While it is certainly essential for
the careful estimation of the error bar of an exponent, it is

This correlation is at least partly captured by the correlation rrelevant for the discussion in th's paper, as it Is quantita-
ively based only orlocal comparisons of error barf®ver-

measured for the binned data. It is to be distinguished fro laps. while its global i . h d coll
the correlations ofndependentealizations, where correla- aps, while Its giobal properties, 1.€., shape and collapse
tions are expected in the cluster size distribution also, i.e. with other histograms estimated, is not cc_mcerned with error

' " bars. Some authors even seem to dismiss the relevance of

these correlations complete]g0].

(PAS)PL(S)) —(PESNP(S)). (39

(PRSPL(s")) —(PLS)NPL(S)). (40)

This must be taken into account as soon as estimates of E. Parallelizing the code
n(s) for differents are compared, as is done when an expo- Constructing clusters and keeping track of clusters rather

nent is calculated by fitting. This effect is also present forthan of single sites seems to be in contradiction to any at-
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realized by trying to growd™ /S trees in each slice. This is
not an exact representation of a growing procedure taking
place on the entire lattice at once, because the latter has a
nonvanishing probability to grow all trees at one particular
spot, while the parallelized version distributes them evenly
among the different slices. Provided that! is large com-
pared toS this effect can certainly be neglected. The advan-
FIG. 14. NodesA, B, andC send messages in the order indi- tage of the procedure is that the growing procedure at each
cated. However, it might well happen that the message sent last §lice does not need to be conducted by the master. The burn-
node C to nodeB, namely message 3, arrives at that node beforéng procedure is more complex, as the fire starts at one par-
message 1, sefitefore message 2 was sent, which arriveefore  ticular site of the entire lattice, so that it must be selected by
message 3 was sent. the master. The exact procedure of the possibly following
burning process depends on the stage of the algorithm.

tempt to run the algorithm distributed, that is, splitting the I the following, the procedures are explained in terms of
lattice intoS slices(one-dimensional decomposition—as pe- Sites” rather than “cells,” as introduced in Sec. Il C2. Us-
riodic boundaries apply, the slices may better be called cylind cells instead of sites makes the code slightly more com-
inderg. Moreover, there is a general problem of paralleliza-phcatedv but the changes are obwoys. If the cells_are prlented
tion which becomes apparent in this context: The usuaparallel to the borders of slicésee Fig. 11, so that its width
bottleneck of parallel systems is the communication layer. IS @ multiple of 2 in the case of a hypercubic lattice, the
order to keep the communication between sublattices as lofdorithm runs considerably faster, as the communication be-
as possible, fast parallel code on a lattice requires as fefveen the nodes is reduced by the same factor.
interactions between slices as possible, while the whole point
of doing physics on large lattices is the assumption of sig-
nificant interaction between their parts. It is this fundamental During the equilibration phase, it is not necessary to keep
competition of requirement and basic assumption whichtrack of all clusters. Nevertheless, there is some statistics,
makes successful parallel code so rare and which seems which is very cheap to gather, namely the distribution of
indicate that problems must have very specific characteristicsurnt clusters and the density of trees. The latter is very
in order to be parallelizable in a reasonable way. simple, as this number changes in time only by the number
However, it is indeed possible to run the algorithm de-of grown trees minus the number of burnt trees. This is also
scribed above on parallel machines successfully in the sengecross-check for the overall statistics, as the tree density is
that it not only makes use of the larger amount(@trib-  equivalent to the probability of a site to belongaoy cluster
uted memory available, but also of the larger amount of(4).
computing capabilities. In fact, the code was successfully The burning is implemented as follows: The master
rewritten using MPI[41] and has been run on two systems chooses a site from the entire lattice and sends the corre-
with distributed memory: The massively parallel machinesponding slice(slave the coordinate andimplicitly) an
AP3000 at the Department of Computing at Imperial Collegedentifier which uniquely identifies this request within this
and on a cluster of workstatiorf25 nodeg update step. The slice’s response consists of the number of
In the following, the most important design characteristicssites burnt(possibly 0, the identifier referring to the initial
are described, which proved important in order to make theequest, and possibly up to two further, new, unique identi-
code running reasonably fast. This concerns mainly the stéiers. These identifiers refer to the two possible subrequests
tistics part, but the equilibration also needs some tricks.  to the right and left neighboring slice due to a spreading of
MPI assures that packets sent from one node to another ihe fire. If a slice contacts another slice, it does so by sending
a certain order are received in exactly the same order—in ththe coordinates of sites which are on fire in the sending
language of MPI this means that the message ordering igatch, together with a unigue identifier. The contacted slice
preserved in each individual communicator. But how differ-sends its result to the master, again together with the identi-
ent communicators relate to each other, i.e., how one streafier and possibly two new ones, corresponding to the possi-
of packets relates to another one, is not specified. If, fobly two contacted neighboring slices. In this way, the master
instance, nodé sends a packet to nod® and then to node keeps track of “operisubrequests,” i.e., requests the master
C, which then sends a packet to noBethis packet might has been told about by receiving an answer containing infor-
arrive earlier aB than the packet first sent 3y, see Fig. 14. mation about subrequests which have not been matched by
However, it is one of the main goals of parallelization to receiving a corresponding answer. The structure of requests
avoid any kind of synchronization, which is extremely ex-forms a treelike structure, and if there are no open requests,
pensive. Even in a master-slave design, as was chosen hetke master must have received all answers of the currently
one encourages communication between the slaves wheneumurning fire. It is very important to make it impossible that
they can anticipate what to do next or can indicate to eachy a delay of messages some answers are not counted, as it
other what to do next. would be if the master would just count open requests, with-
As explained abovéSec. Il A), an update consists essen- out identifying them individually. It can easily happen that
tially of two steps: growing and burning. Both processes arehe master receives an answer for a request without having
now distributed among the slices. The growing procedure iseceived the information about the very existence of the re-

1. Equilibration
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quest. It is worth mentioning that in this scheme the order of
burnings is irrelevant if the burn time is not measured, as
was done here.

Adding up the number of burnt sites gives the total size of
the burnt cluster. This number is finally sent to all slices. If it
is nonzero, the step is considered to be successful.

After equilibration, the cluster structure of pointers and
roots as described aboysee Sec. I C)llneeds to be con-
structed. This is done in a naive manner: Keeping track of
sites which have already been visited, every site is visited
once. The first site visited in each cluster becomes the root of
all sites connected to it, which become marked as visited.

SONNNNNNNANNRASNNNN
NN
ANAREANANRREANNNR RN

The procedure corresponds to the burning procedure de- B D
scribed abovésee Sec. IICH
Each slice maintains a local histograp?, which contain FIG. 15. The slices, three of which are shown here, maintain the

all clusters which do not have a site on the border to anotheteferences for all clusters within each sliGhustrated by arrows
slice. Otherwise, they are maintained at the master’s histoeven for border clusters. The referendetweenslices, however,
gram, as discussed below. In this case,(tbeal) root site of  are maintained by the master. The variabkes0, B=L—1, C
these clusters is moved to the border. As periodic boundary: 1, andD=1+L—1 are the indices used for references within
conditions apply, the only boundaries are those with othegach slice.

slices.

2. Collecting statistics ber of sites updated during a single growing phase is limited

After finishing the equilibration phase, another conceplby 6'/S. The expected number_ of t_hese messages Is not
needs to be applied in order to count the total cluster siz8Ven Py the fraction of border sites in each slice, because
distribution P3(s). At every update of the lattice, each slice 1anges in all bordeclusters(i.e., clusters with at least one
must keep track of the clusters in the same way as was d&it€ in the borderaffect the bordesites as the root of each
scribed in Sec. 11 C 1. Clusters which do not contain a site aPorder cluster is a border site. _

a border to another slice are maintained locally, i.e., at each However, the data regarding the updates in the border do
node has docal histogram However, if a cluster contains a Not need to be sent from the slaves to the master, if the
site at a border, it might span several slices. As soon as Rurning attempt following the growing fails, i.e., if an empty

cluster acquires a site at the border, it is removed from théite has been selected for lightning. Of course it is much
local histogram and the site under consideration becomes thgore efficient not to send any data if not necessary. As there
root of the cluster. The algorithm ensures that a cluster withs only a finite number of sites in each slice, the theoretical
at least one site on the border has its root at the border. limit of updates of border sites is bound by this number.

During all processefgrowing or burning, the size of all However, it is sufficient to allocate a reasonable amount of
clusters is updated as usual, independent of the location ahemory (4 turned out to be enougfior the stack of mes-
the root. If the status of a border site changes, its new valusages to be sent and check its limits, similar to the stack used
or its change is put on a stack together with its coordinatein the burning procedure described in Sec. Il C 4. Henceforth,
During the growing procedure, the following changes of thethe sending of the update information of the border is called
status are possible. “sending the border.”

(i) New occupationChange in occupation information for ~ The master maintains a copy of the state of the border
a site(cell). If this is the only change, then it must have beensites and updates global histogramof border clusters. By
already occupiedthis is only possible in an implementation sending the changes on the border to the master as described
using cell. If this is not the case, the reference informationabove, the master can update its copy of the configuration of
pointing to the root site of the given cluster must be updatedhe borders as well as the global histogram. At the end of the
also; see the next point. simulation, all histogramsS slaves histograms plus the glo-

(i) Merging border clustersChange of the reference in- bal histogram maintained by the master noalee summed to
formation for a site(cell). This can only happen if the site produce the totalP?.

(cell) was(completely unoccupied at the time of the change  As suggested in Fig. 15, the slices maintain the pointers
or did contain size information, i.e., it was itself a root. within each slice, and these references are not changed by

(iii ) General merging of cluster€hange in size informa- the master, which only connecketweenslices. If a refer-
tion for a site(cell). Only an increase is possible, so that anyence at the border changes at a slice, the master receives a
change can be represented by a single number indicating theessage to apply the corresponding chan@esing two
size difference. clusters; if the size of a cluster changes, the master updates

For each border site changing at each slice, the correghe corresponding unique root; etc. These changes are indi-
sponding information is sent to the master. Typically thecated by the slaves, and the master only realizes them in the
number of messages is not very large, because the total nureepy of the border sites. Only if a change in occupation
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occurs must the master actually perform some nontrivial ophas been introduced. This is a finite stack, which stores the
erations, because a newly occupied site might introduce size of the clustes together with the value of =+ (T—t

new connectioretweerborders of different slices. From the +1) as described in Sec. Il C 3. During the growing phase
point of view of the master, only borders belonging to twowhen such large clusters grow fast, one would obtain a se-
different, neighboring slices are directly connected and therequence of stack entries of the forns,(’), (s,—t’), (s

fore to be maintained by the master, while the connectivity of+1t"), (s+1,—t’), (s+2t'),..., corresponding to entering
the borderswithin each slice is indicated and maintained by the appendix, €,t'), increasing in size by 1, which gives
the corresponding slave. Apart from that, the master main¢s,—t’), (s+1t’), etc. As soon as a cluster is larger than
tains the slice spanning structures in exactly the same way ake upper cutoff, each update causes two entries, of the form
the slaves, e.g., a cluster having multiple roots among thes,—t'), (s+1t'), the first for the deletion from the histo-
various slices has a unique root at the master, etc. gram, the second from the increase in the next slot. These

The question arises how the master best keeps track of thentries possibly cancel, for example the sequence above is
changes of the borders. Ideally, a change of reference of @quivalent to the single entrys¢2t’). It turned out to be
site at the boundary is communicated to the master simply byiighly efficient to perform this cancellation, i.e., to check the
sending the new pointer valu@ndex. By choosing a rea- last entry in the appendix for being the negative entry of the
sonable indexing scheme, this is indeed possible. If the valuene to be done.
of the reference is within 0 arld— 1, wherelL is the width in As the maximum size of the appendix is finite, it must be
terms of the number of site®r cells (see Fig. 15 the  emptied from time to time. The information about the size of
reference denotes a site in the left border within the samehe appendix of each slave is sent to the master together with
slice. Similarly, if the value of a reference is withirandl  the information about the borders. If a possible overflow is
+L—1, wherel denotes the first index in the last column, a detected(2/3 of the maximum size in the implementation
reference with such a value is bound to point to the rightoresente] the master requests all slices to send the content
border of the same slice. If the master uses indexes of thef their appendices and applies it to the global histogram.
range[ L, — 1] for denoting cross references between slicesThe slices then empty their appendices.
the references are therefore unambiguous and no translation
is necessary between indices used by the slices and indices
used by the master.

During the burning procedure, the master can make use of The random number generat@®NG) acquires a crucial
its knowledge about the borders. The site selected for startingple when used in a parallel environment. Wikhthe num-
the fire is most likely a bulk size, so that the correspondingoer of iterations, the expected number of calls of the RNG is
slave needs to be contacted for the occupation informatioM 6 */p (for M~10/, ¢ '~5x10" this is more than

3. The random number generator

Three outcomes are possible. 5% 10'), so that an RNG such as ran1[#2] with a period
(i) The site is unoccupied. Nothing happens, all slices geof only ~2X 10° is insufficient. Therefore, ran2 2] was
signaled to continue with growing. used for all simulations, both parallel and nonparallel, which

(i) The site is occupied, but does not contain a bordehas a period of>2Xx 10'8. If the number of RNG calls is
site. In this case, the slice contacted can send back the size gifhall enough, one can compare results obtained by means of
the burnt clustefinformation it knows even without actually ranl and ran2. No significant deviation was found.
doing the burning as the size is stored in the root, which In the parallel implementation, each slave requires an in-
needs to be found anyway in order to find out whether thedlependent sequence of random numbers. This is a classical
cluster is a border clusteand the master can signal all other problem in parallel computingt3,44. The simplest solution
slices to send the border and to continue. After receiving thés to divide a single sequencg, r,,... into distinct subse-
borders, it can update the histogr@&6]. quences. This can be done either by a leapfrog scheme

(ii ) The site is occupied and contains a border site. In thig44,45, where each subsequence consists of random num-
case, the slice sends the reference of the border site back lbers which ares calls away, i.e.S subsequences of the form
the master, which then contacts all slices to send the most,, rs.,, fosu,--- Withu=1,2, ... Sunique at each slave,
recent border update. It updates the border and the hist@r by splitting the sequendel4], so that each subsequence
gram, deletes the cluster which is going to burn, and sendsonsists of consecutive RNG calls, i.e., yx, M2+ ux» M3+ ux
the “burning borders,” i.e., a list of all border sites which again withu=1,2, ... S and offsetX large enough to avoid
will be affected by the burning procedure to the slices in theany overlap. The latter scheme has the advantage that the
form of a stack as described in Sec. Il C4. The slaves ussequence consists of consecutive RNG calls and therefore
this stack as the initial stack of the burning procedure andhas been used in the following. The implementation of the
delete the corresponding sites. No communication betweeoffset X at each slave is easily realized by restoring all state
the slices is necessary. variables of the RNG, which have been produced once and

The global histogram contains much larger clusters tharfior all in a single run producing akSrandom numbers and
the local histograms. In order to keep memory requirementsaving the state variables on a regular basis. However, such a
low, even for histograms of resolution unity, it is reasonabletechnique is advisable only if the RNG calls do not dominate
to introduce a threshold above which slaves use the globdhe overall CPU time, in which case it would take almost as
histogram to maintairP? even for local clustersi.e., non- long as the simulation itself to produce the random numbers
border cluster For that purpose, a histogram “appendix” required for it.
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TABLE lIl. Parameters and results for different choiced.aind #~ 1. The average cluster size is denoted
by S, for definition see Eq(l), but due to a truncation in the histogram for some of the simulations in the
range 200& ¢ *<16 000, the number presented is actually the average size of the burnt cluster. In the
stationary state it is—apart from small corrections—also given by §l/(p), see Eq(7). Values ofg~ !
andL printed in bold indicate results shown in Fig. 16; the other results are only for comparison. All data are
based on X 10 (successfulupdategsee Sec. Il B Lfor the transient and statistics, apart from those printed
in italics, which are based on short runs{0® updates for the transient anck1.0® updates for statistigs

ot L n(1) 3 3 (1-p) 6p
125 1000 0.04553 204.07 0.37973 204.18
125 1000 0.04552 203.81 0.37977 204.15
125 4000 0.04553 203.88 0.37983 204.10
125 4000 0.04552 203.77 0.37983 204.10
250 1000 0.044 51 395.03 0.387 56 395.06
250 1000 0.044 52 394.08 0.387 50 395.15
250 4000 0.04454 394.97 0.387 66 394.89
250 4000 0.044 54 395.29 0.387 65 394.91
500 1000 0.04380 764.73 0.39316 771.75
500 1000 0.04380 764.81 0.39315 77177
500 4000 0.04382 771.12 0.39343 770.88
500 4000 0.04382 771.90 0.39343 770.87
1000 1000 0.043 28 1495.36 0.397 16 1517.91
1000 1000 0.043 28 1490.05 0.397 14 1518.00
1000 4000 0.04331 1510.85 0.39761 1515.00
1000 4000 0.04331 1513.13 0.397 64 1514.81
1000 8000 0.043 32 1510.10 0.397 63 1514.91
2000 4000 0.042 96 2976.34 0.40053 2993.35
2000 4000 0.042 97 2990.50 0.40054 2993.15
2000 8000 0.04297 2995.67 0.400 60 2992.56
4000 4000 0.04273 5929.24 0.402 58 5935.91
4000 4000 0.04273 5930.97 0.402 49 5938.03
4000 8000 0.04274 5931.32 0.40261 5935.15
4000 8000 0.04273 5935.36 0.402 56 5936.47
8000 4000 0.042 55 11786.97 0.404 05 11799.72
8000 4000 0.042 55 11 788.90 0.404 06 11799.07
8000 8000 0.04257 11801.31 0.404 12 11 795.98
8000 8000 0.04257 11792.82 0.404 13 11 795.38
16 000 4000 0.042 44 23430.01 0.405 25 23481.82
16 000 8000 0.04243 23466.93 0.405 40 23467.22
16 000 8000 0.04243 23446.10 0.40542 23465.64
16 000 16 000 0.042 45 23449.31 0.40541 23466.57
32000 16 000 0.042 32 46 443.83 0.406 60 46 701.82
32000 32000 0.042 33 46731.44 0.406 62 46 698.51
64 000 32000 0.042 20 91148.64 0.407 77 92 952.40
Il. RESULTS variance. All results presented are based on the same simu-

The sections above were only concerned with the technil-at'ons’ the parameters of which are given in Table Il

cal issues of the model and its implementation. Some of the
actual results from the simulation carried out using the new
algorithm have been published alreddg]. This article was
focused onn(s). The main outcome was that the standard Before the actual findings are discussed, it is important to
scaling assumptiofil2) is not supported by numerics, so the consider how to avoid finite-size effects, which otherwise
main conclusion was that the modsinot scale invariant might damage the results. Usually, finite-size effects are
In the following, these results are shortly restated andavoided by keeping the correlation lengitsmall compared
discussed. Other observables are connected with this obseo the system size. However, it requires a significant amount
vation to see whether it is onlg(s) which lacks scale in- of CPU time to actually determine the correlation length.

A. Cluster size distribution
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FIG. 16. The rescaled and binned histogr@f(s)s™ /P?3(1), FIG. 17. Attempt to collapse the data shown in Fig. 15 using

where7* =2.10 for§~1=125,250,500. . . ,32000,64 00Qas indi-  * = 2.10,50(6)= 6", and\*=1.11 as derived from Eq21).

cated in a double logarithmic plot. The linear sideis chosen  As expected, the data do not collapse. The big arrow points in the

according to the bold printed entries in Table Ill and large enough tqjirection of increasing 1.

ensure absence of finite-size effects. The error bars are estimated

from shorter runs. The rightmost histogrgdotted, 6~ 1= 64 000) The crucial problem shown in Fig. 16 is the intermediate

could not be cross-checked by another run, see text. The dashedinimum that develops a8 ! is increased. It renders the

lines belong to different exponents, whose value is specified as théata collapse as described by E#j2) impossible(for more

sum of the slope in the diagram ant, i.e., a horizontal line would  details, se¢18]). Figure 17 shows the same data again, now

correspond to an exponent 2.1. The short-dashed lines represgpt 5 attempt to form a data collapse, usisg6)= o

estimated exponents for different regions of the histogf2u#2 for with \* =1.11 from Eq.(21) and 7* =2.10 (for comparison,

s within approximately{20,20q and 2.19 fors within [200,2000); see Table IV. As expected, the collapse fails.

the other exponents are from the literature, namely (3)léh In less technical terms ,it was shown[itg] that there is

[15,24] and 223/9%2.45 in[46]. Since it was impossible to relate o choice ofr which aIIOV\}s a data collapse far%(s; ). It

t-h ese exponents to any property of the data,_ the_exact position of ths%eems that tﬁe distribution is the same for two dif'ferént val-

lines associated with them was chosen arbitrarily ues of 6 up to a certai? cluster size, which increases seem-

S . . ingly unbound withé™ ", i.e., for two very large values of

Moreovgr,a priori It wo_uld_n_ot b? clear which ratig/L to 6~ 1 the two distributions collapse without any rescaling. Be-

choose N order to avoid f|n|te-_S|ze effects. L ond this cluster size, the distributions deviate. The one with
The simplest way to determine whether finite-site effect he larger6~* forms a deeper dip and ascends afterwards to

are present is to compare estimates of _observables for WQ maximum, which can by rescaling, be arranged to be the

systems with the same parameters but different $i4@5 If same for all,a‘l. The e\,/er growing dip prohibits a reason-

: me height and the maximum to increas@irt.
drawback that each set of parameters must be simulated a?The key problem of the DS-FFM is that more than one

least twice, but it gives full control over finite-size effects. c i .
'z e . . length scale is visible apparently for any system iz&he
1_
Apart from § ._64 000, which is speC|aIIy.marked In Most statistics ofn(s) is not even asymptotically dominated by a
of the plots, this approach has been. applied 'ghroughout th&ngle length scale. For any system sizef@s) only given
rr?sflilfts]s presented. The method was discussed in greater de%'l all slarger than any lower cutoff allows the identification
L i of 6 by the shape of(s) alone.
ta‘rfslgttrgf é% S:ggi;&ﬁgg;' d;etzuilrtw[ct]hfsg. fgrrlr? figure con- This indicates that simple scaliri@2) does not apply and
: u the exponentris undefined. Keeping this in mind, it is very
PA(s) instructive to look for other properties as well and investigate
Pa—(l)’ (42 their scaling.

1. Finite-size scaling

which has the convenient property to be unity $sr1. The The failure of the DS-FFM to obey proper finite-size scal-
normalization??(1), which converges anyway to a finite ing has been observed[ia2] already. In the following, some
value as#~'—c (see Table Il), does not affect any of the finite-size scaling principles have been applied in a straight-
results, especially not th@ttempteg data collapses. forward manner and subsequently ruled out.
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As known from percolatioil4], the generalized form of ' '
the scaling behavior of; is

So(6,L)=6" m(6L?), (42)

where m(x) is a crossover function describing the depen-
dence ofsy on the two parameterg andL. For sufficiently
large argumenk, the crossover function is expected to ap-
proach a constant, such that ER0) is recovered. For small
arguments, however, the dependence of the cutoff is ex-
pected to be strongly dominated byjust like in equilibrium
critical phenomena, wherk takes over the role ot for 0.5
sufficiently small systems. Thus, for small argumemis)
«=x*, so that for sufficiently small, s, becomes independent
of 6. g ' '
Generic models of SOC do not have any tuning param- 10’ 10 10 10 10°
eters other than the system size, so that the catoi§ only
a function ofL. In this sense, finite-size scaling is the only  F|G. 18. Plot of the rescaled POF(s; 6,L)s™ /P2(1:6,L) for
scaling behavior in SOC, and a failure of the model to comfixed 6 '=1000 and different system sizes, L
ply to finite-size scaling is identical to the failure to comply =125,250,500,1000. The different shapes make it impossible to
to simple scaling altogether. Therefore, one might be sureollapse the data, as would be expected from a finite-size scaling
prised to see a simple scaling analyaisl a finite-size scal- ansatz(43) and(42).
ing analysis in an article on an SOC model. However, the
forest fire model is different in this respect, as it has thewith system size, so that the maximum for every finite sys-
additional paramete#, which is, supposedly, finite only be- tem size is smaller than the expected average tree density in
cause of the finiteness of the system size. In the thermodyhe thermodynamic limit, which is, according to Table IIl,
namic limit, it supposedly disappears as a free parameter. larger than 0.407 77 and was recently conjectured to be as
As seen abovésee Fig. 17, the 6 dependence dfi(s; 6) large as 0.592. .. [47], namely the critical density of site
cannot be captured sy in the scaling function alone. How- percolation[29]. Accepting this limitation, Fig. 19 shows an
ever, the scaling fornil2) would remain valid in some sense example for thre@(s) with roughly the samg and different
if in the finite-size scaling regime thé dependence of L and 6. Most surprisingly, two of the histograms collapse
Nn(s; ) enterss, only. Therefore, the original forng12) is  already without rescaling, while the third €500) reveals
generalized to the same problems as visible in Fig. 16. Hence, finite-size

scaling also does not work for fixea
Nn(s;0,L)=s"7G(s/sy(HIL)), (43) That large densities of trees cannot be reached by small
system sizes is related to the specific way the histograms are
ignoring that it has been shown above already that it does n@enerated and the density measured: Is it before or after each
hold in the limit wheren(s; #,L) becomes independent bf
In this section, the dependelnceﬁfs; 6,L) onL is investi- 2 ' ' ' '
gated in the limit of large9™* and smallL. A similar study
has been performed by Scheekal.[22], however on much L=1000,4000 L=500
smaller scales and usirg®.

If the form (43) holds, it should be possible to collapse
n(s;0,L) for differentL by choosing the correct and s,
just like for the cluster size distribution of standard percola-
tion. This turns out not to be the case, as can be seen in Fig.*
18: Thesmaller Lis, the strongerthe changes of shape of
n(s) for any 0 tested. Consequently, EG3) does not hold,
and ass; is only definedvia its role as cutoff in Eq(43), s 1
is undefined and Eq42) remains meaningless.

One might argue that the average density of tregjsee
Eq. (4)], is the relevant parameter ofs), so thatn(s) has 0.8
the same shape for different, sufficiently smialland con- 7
stantp. However, as shown in Fig. 20, for any value ®f 10’ 10 10 10 10° 10
there is a value of, such thafp varies considerably with
decreasind-. Especially, there seems to be a maximum tree  F|G. 19. Plot of the rescaled POF(s; 6,L)s™ /P3(1;6,L) for
density for every system size, so that for large valuep of fixed p~0.397: L=500 with 1H=2000 (p=0.396827), L
there is a smallest system sike below which this density =1000 with 16=940 (p=0.396825), andL=4000 with 18
cannot be reached. This maximum increases monotonically 870 (p=0.396 883). Again, a data collapse is impossible.

Pi(s)s"1P’(1)

L=500,1000

s*/P°(1)

P(s)
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0.45 - . newly defined histograms do not have a considerably differ-
0.40 L _ L] ent shape, so that a collapse remains impossible. For ex-
) ample, the problems shown in Fig. 18 become even more
035 - . pronounced, if the histogram is taken before burning.
Surprisingly and actually in contradiction to what has
0.30 ¢ P i been said in Eq(6), there is a discrepancy between the clus-
025 - . — - ter size distribution of burnt cluster$®, and the overall
tla 1 pa00 s cluster size distributior??, even if the latter is measured
0.20 | *L=500 | ] beforethe burning takes place. This sounds paradoxic, be-
0.15 L 0% < Lion| | cause the random picking of a cluster to be burnt is just a
L 4 03e7 sampling of P2 This cannot be caused by the correlation
0.10 1 //\\ - 1 between those samples, due to the fact that(s) is actu-
0.05 i ally a function of the cluster chosen t&ta correlation like
' ' oS this would be equally picked up b?. The reason for this
0-00102 0 10 discrepancy is the fact that a site picked randomly as the

starting point of the next fire is necessarily occupied. There-
B fore, n,(s) with a low occupation density entef® over-

FIG. 20. The average density of tregs,as a function o and  weightedly. As low density states contain many more small
for variousL. For sufficiently small systems, the maximumgris  clusters than large oneB,® overestimates the probability of
much smaller than the expected density at the “critical point,” small clusters. A sample fgP® at a low density is indistin-
marksp=0.396 827, the density chosen in Fig. 19. The inset is apa gjyig|ly contains the information about the density. To
magnification of the crossing of the straight line with the S'mU|at'°niIIustrate that, one might imagine a sequenceknfrny con-
data, and shows all three values@iL. used in Fig. 19. figurations that consists of one state, with exactly one cluster

. - ) of size 1, and a second state, with exactly one cluster of size
(successful burning? For sufficiently large systems, it be-| 2 The two configurations appear with a frequency such that
comes irrelevant when to do it, because two histograms, ong ¢, ster of size 1 is burnt down as often as a cluster of size
measured before, the other one right after the burning, diffef 2 1,4 resultingP? reports that a randomly chosen site
only by one cluster. Also the question of whether to averag_?)elongs to a cluster of size? with probability  and to a
only over successful burnings is irrelevant, because the di Cluster of size 1 with probability 1/(2%), while P incor-
ferlence beltween a histogram before and after the buming {s ., reports the same probability for both cluster sizes. The
only one cluster. , . problem can actually already be spotted in Eg), which

Clearly, for small systems, the difference between the h'sbontains ap on the RHS, which should rather hgt). The
togram before and after the burning is just the one enormoul§roblem disappears in the limit whepét) hardly changes in
cluster of sizeD(6~1). Figure 21 shows the difference. Even time. i.e.. in the limit ofg~t<L2
though In .pr|nC|pI<.a every d(_ansny is reachable for EVery sys- ’is aI,so clear why Eq(7) breaks down for small systems
tem size if the histogram is measured before burning, th‘?‘;md larged™: The average size of the burnt cluster tends to

L2, while the density tends to 0. Apparently E@) must be
10 ' ' ' ' incorrect forp<(L26+1) L.

2. Scaling of the moments oP @

According to Eqs(12), (20), and(8), the nth moment of
P2 should scale likdthis analysis has apparently been intro-
duced to SOC by De Meneddt al.[25,48,49)

~ 38"sn(s; 6) B
S= Ssn(s;6)

P(s)s" 1P (1)

gn,0~ """ 7+ corrections, (44)

whereq,, is a nonuniversal amplitudsee Sec. Ill A 3and\

is also known as a gap expond®0]. The corrections are
due to the lower cutoff and the asymptotic character of the
scaling, which is expected only for “sufficiently smail”
[26]. In turn, one can infer a scaling form like Ed.2) if the

FIG. 21. Comparison between the rescaled and binned histgnoments scale in the form of E¢4).

10’

grams measured before and after the burning for small25 and Contrary to what is observed in an attempt of a data col-
large #~1=1000. As expected, only the statistics for lagyis af-  lapse, it turns out that the moments follow beautifully this
fected. The dashed line shows the data®d¥(s). scaling behavior. Figure 22 shows the scaling of the mo-
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FIG. 22. Scaling of thexth moments ofP? in double logarith-
mic plots. The straight lines show the results of a fit as aRp(
see Eq.(44).

FIG. 23. Exponentsr, of the scaling of" in §vsn. The slope
of this curve gives\, and 7 can be derived from the offset. The
straight, full line shows the resultss=1.088B... and 7

. o . =2.056...; the dashed line shows\=1.098... and 7
ments forn=2,3,5,10. By simply fitting the double logarith- —5 oges . . . from a fit excludingsd*=64 000.

mic data to a straight line, i.e.,

log(s")=a/— o, log(8), (45) f : "ds f(s)s"+ f  ds€G(s/0 7 may,  (47)
6~ Xmin
one can derive an estimate of the exponentsand in turn
compare them to the expected linear behavior, where the first integral describes the behavior up to the mini-
mum, which scales lik@ *min (x,;,~0.95), and the second
on=N2+n—1). (46) integral the behavior from the minimum on. Because Fig. 17
indicates already that the scaling functigndoes not col-
The resulting estimates, usimg=2, . . . ,8 ando;=1 from  lapse using a scalg” “m= this scaling does not work and can
Eq. (1), areA\=1.08@ ... and7=2.056 ... , where no therefore be only an approximation. While the first integral is

statistical error is given because the systematic error, due f@ound by O(g~("*1min), the second integral gives
neglecting of the lower cutoff as well as the correctioad), ~ O(6~ ("""~ 7*ma) asymptotically, which dominates the mo-
is expected to be much more important. By using the asments for Xpn(N+1)<Xpna{1+n—7), which leads ton
sumptiono; =1, this result is consistent with EQ1). The  >9.08 usingXy,~1.2 andr~2.1. Figure 22 shows clearly a
results are shown in Fig. 23. deviation from the straight line behavior far *=64000
The exponent found for is remarkably close to the ac- andn=10 and even fon=>5. It remains unclear whether this
cepted value of standard 2D percolation, 187/91is due to the effect discussed or simply a finite-size problem.
=2.05494 ... . However, if one leaves out the results for According to the findings presented in Sec. Il A3, the latter
6~ 1=64000, which seem to be a bit off the lines shown inmight well be the case.
Fig. 22, one finds a slightly larger value for the exponent, It is worthwhile to point out that the analysis in this sec-

namely r=2.0864 and\ =1.09%B . . . . This is much closer tion arrives at estimates for the critical exponents very close
to the 7* =2.10 used above. For comparison to values found0 those obtained by Pastor-Satorras and Vespigfhii
in the literature, see Table IV. who, however, allow for the corrections in E44) that were

It is very remarkable that the resulting estimates for theomitted above.
exponents are so impressingly consistent, even though in
Sec. Il A it turned out that the scaling assumptid®) does 3. Universal amplitude ratios
not actually hold; one would much rather expect a failure of | general, simple scaling involves two additional nonuni-
the moments to compl_y with Ed44), or a failure of the gr5q| parameters andb,
exponents to comply with E¢46). Apparently the moments
are hiding the breakdown of simple scaling. Therefore, it is S
interesting to analyze the behavior of the presumably univer- n(s;0)=as” Tg( _) ) (48)
sal amplitude ratios, which are solely a property of thie- b
sumed scaling function.
Another explanation for the moments being well behaved-or 1< 7<2, the lower cutoff becomes asymptotically irrel-
is the following: According to[18], one might expect the evant compared to the upper cutoff for all moments
moments to behave like n=1—indeed the effective of sn(s;#) fulfills this condi-
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TABLE IV. Exponents of the forest fire model found in the literature. The first column indicates the
source, the second column the methB(@s) denotes a direct analysis ofs; #), which sometimes may have
been just an estimate of the sloperdfs; #) rather than a data collapse. For details, the original sources
should be consulted. The entry “moments” refers to an analysis of the momemé&spf the entry “theo-
retical” to theoretical considerations regarding the relation of the forest fire model to percolation.

Reference Method T N
Christenseret al.[16] P(s) 2.1605)
Henley[21] P(s) 2.1505) 1.16715)
Grassbergefl17] P(s) 2.152) 1.082)
Clar et al. [15] P(s) 2.143) 1.153)
Honecker and Peschi20] P(s) 2.1596) 1.172)
Pastor-Satorras Vespigndrs] moments 2.08) 1.091)
Schenket al. [46] theoretical andP(s) 245. .. 11
Grassbergef47] P(s) 211 1.08

tion as 2< r<3 [24]. Neglecting the lower cutoff then gives that means tha#~ =64 000 requires at least systems of the

for the nth moment ofsn(s; #) size L=64 000, which might explain the large value pf
_ obtained in[47]. Apart from that, this analysis agrees with
s"=a(bs) " g, (49 the result found in Sec. Il A: The supposedly universal am-
. plitude ratios keep changing withand an asymptote cannot
with be estimated, i.e., the scalii@2) is broken.
gnzf dx dX " TG(x). (50) 4. Burning time distribution
0

Another distribution of interest is the distribution of burn-
In order to construct universal amplitude ratios, one needs ting times, PTM(TM ;0). The statistics are comparatively
get rid of all exponents and parameters. This can be achievegiall for this quantity, as the burning time is defined only for

by considering the cluster removed. However, they still seem to be good
~ enough to allow us to make a statement about their scaling
NS :[a(be—)\)(l—f)](l—n/Z)g_;]z (51) behavior. The rescaled daIBsyM(TM ;0)TR,,* with a trial ex-
(s?)"2 (o) ponentb* =1.24 can be seen in Fig. 25. The intermediate
part of the distribution betweet,,=4 and the maximum
and[Eq. (51) with n=1] seems to bend down @ ! increases, but the developing dip

is much less pronounced than in Fig. 16. Nevertheless, the

E A (1— 91 i here a data collapse seems possible moves out to-
— =[a(bo )L v 57  reglonw PSE 3 P - Move
NE: [a(bd™ ) ] gi? 2 wards larger values ofy,, which again prohibits simple
If one now multiples Eq(51) with the (n—2)th power of 18 F . . . : 45
Eq. (52), everything cancels apart from tlgg, ol : n=3 ) 4 1 5 £"=4 140
T 2 ' [) I { 135
s" (5)n :gngl (53) 1.6 - E:{EIE 11 II}I 1 20
~ ~ -1 ‘
()2 (82)(n-212 g3 1.5 | 3 I %] 55
14 = =i 20

It is worth noting that for a trivial case, Whegoc('é)“, the :
effective exponent is necessarily unity, and E¢1) as well 12
as Eq.(52) are already independent 6éf

A further simplification is to imposey;=1 andg,=1, 10r H} 1 H 140
Hh - HHH}

50

&,
e
—e—
A
Y

which fixes the two free parameteasandb in Eq. (48), so 8r 1 130
that 6 = 120
~ 4 : : : e 10
s"(g)(n-2 1¢ 10 100 10 1070 100 10
=< 54
Gn (Sz)(n&) (54 18

. . o FIG. 24. The supposedly universal amplitude ragjp(54) for
for n=1. In Fig. 24, this quantity is shown for=3,4,5,6. n=3,4,5,6. The error bars are based on a jackknife scH&mdq
Now, for #~1=64 000 a deviation is clearly visible—in turn using a roughly estimated correlation time of 50, see Table II.
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FIG. 25. The rescaled probability distribution of the burning
time, PTM(T,\,I ;0). Similar to Fig. 16, a dip seems to form between
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first glance, the assumption of a power-law dependence of
and Ty, seems to be confirmed. Also the width of the distri-
bution seems to be very small, with almost no change over
five orders of magnitude is. However, the plot is double
logarithmic, so that the width roughly scales like the slope,
which is about 0.6, as shown by straight lines. This matches
perfectly the exponent chosen to resd@lesee the caption of
Fig. 27).

By inspectingE(Ty|s;8) andE(s|Ty ;6) for various 6,
one can determing’ as a slope in a double logarithmic plot.
Figure 28 shows that’ remains ambiguous and deviations
from the expected behavior do not vanish @s' is in-
creased. Asymptotically one might expectt1~0.62, while
(7% —2)/(b* —1) suggests U'~0.417. The value of 0.62
is consistent with the rough estimate 0.6 made in Fig. 27.
Figure 28 also shows two other exponents, 0.53 and 0.7, the
former being in line with the value found in the literature of
0.5298) [15].

Conclusively, it is noted that the other observable avail-
able in this studyT,,, does not seem to provide an alterna-

the low T, region and the maximum, which again renders a datative way to ascribe the DS-FFM critical behavior in the sense

collapse impossible.

scaling. Assuming that the bending might become weaker for

sufficiently largeTy, leads to a data collapse shown in Fig.
26, using an exponent’ =0.6 as defined in Eq22). How-
ever, only for values 011'M%TMO will the data possibly col-

of the scaling behavior as proposed in the literature.

B. Tree density as a function of time

As mentioned abovdsee Sec. IllA], the density of
trees,p, is actually a function of time. Initially, it is periodic
around the average value, with an amplitude that depends

lapse. Again, this violates the assumption of simple scaling',n(,j“my on 6. This amplitude decays in time and after suffi-

namely that there is eonstaniower cutoff above which the
behavior is universal.

ciently long timesp(t) looks like a random walk aroungl.
Figure 29 illustrates how the period and the amplitude

The only remaining exponent of those defined in Secdepend or andL: The period is proportional t6L2, while

IB4, u', relates the statistics afand Ty, . It requires the
bivariate distributiorP(s, Ty, ; #), as the exponent is derived
from E(Ty|s)=s"', which is essentially equivalent to Eq.
(17). The distributionP(s, Ty ;6) is shown in Fig. 27. At

FIG. 26. Attempt of a data collapse fBler(TM ;0). Only at the

the amplitude mainly depends @h i.e., the strength of the
influx <@~ . The reason for the former is easy to under-
stand: 9 Y/L? is proportional to the fraction of newly
grown treeq20]; the change of the tree density is roughly

d 1-p 1

atP= , ez 7(p(1),1) (59

assuming that it hardly changes during the growing. Other-
wise, one would have to introduce a microscopic time scale,
which makes it possible to measure the tree density on the
time scale on which the trees are grown. The prefactor (1
—p)/p takes into account that only empty sites can be reoc-
cupied and that an occupied site is required for the burning to
start. The second term on the right-hand sigiéy(t),t), is a
noise which represents the burning of the trees. From this
equation, one can already expect that the period is roughly
linear in OL%p/(1—p). This has already been measured in
detail by Honecker and PescHe&0]; the numerical results
presented heréFig. 29 are fully consistent with their re-
sults.

Apart from the relevance of the periodic behavior for the
equilibration time, the periodic behavior p{t) is physically

far end of the scaling function at the descent from the maximum d@®f great significance: What distinguishes the state of the sys-
the data seem actually to collapse. This, however, is not sufficieriem for a givenp at the ascending and _the d_escendlng
for a data collapse. The big arrow points in the direction of increasbranches? Trivially, the sequence of configurations of the

ing 671,

system in time is Markovian, while the tree density alone as
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FIG. 27. Binned density plots d¢¥(s, Ty, ; §) for different values of) on a double logarithmic scale. High densities are presented as dark
areas. For better presentatid?(s, Ty, ; #) has been multiplied by a factet”’, tilting the distribution similar to those shown in Fig. 16, so
that the second maxima in the distribution, those at largad T, , are roughly as high as the first maxima, i.e., they show in the plot as
dark as around=>5. SinceP(s, Ty ;6) is a histogram only of burnt clusters, it contains a fac@ompared ta(s) [see the discussion
around Eq(4)]. Therefore, the exponent 2.7 needs to be compared +02.10, indicating that the width d?(s, Ty, ; 6) roughly scales like
s%6 so that the reduced height B{s, Ty, ;6) is caused by an increase in width. This coincides well with the slope of the distribution, as
shown by a straight line. Thus, the relative width remains roughly constant.-

a time series is certainly not. The configuration somehowrees are distributed almost randomly, apart from the spatial
manages to “remember” whether the tree density was incorrelation in density. The period of this process would be
creasing or decreasing during the last update, in order tproportional to the time it takes to renew the entire system,
keepp(t) periodic. which isL26p/(1—p), namelyL? divided bys, see Eq(7).

One explanation for this behavior might be a “growing-  The time-dependent tree density gives only a hint of what
and-harvesting” concept: From the initially completely ran- actually happens in the system. It would be very instructive
dom tree distribution, larger and larger patches are formedp study the two-point correlation function as a function of
so that larger and larger patches are harvested by lightningime to answer the question of whether the explanation above
When the density reaches the maximum, for a while thds actually valid.
patches harvested remain large compared to the amount
grown. This is because the growing process does not actually
produce those large patches itself, but makes them available )
to the harvesting by continuously connecting smaller patches From the results presented above, it becomes clear that
in areas where the lightning has not yet struck. This procesd€ forest fire model does not show the scaling behavior ex-
goes on until almost all the trees are newly grown, i.e., th?&cted for a system, which becomes critical in the appropri-

C. Discussion

10° ‘ ‘ : 10° 0.5/ 1/6=125 1
L=4600 ©7'=125 . L=8600 67'=8000 i
i) g o4
- 110
10° | 0.3
W3 E 1106
10" ¢ .
{10’ s
* E(T,J5) « E(T,J9)
» E(sIT,) /‘4 " E(sIT,)
10° : : < 10’
10° 10 10° 1¢ 100 10 ,
s s (1-p)t/(peL’)

FIG. 28. E(Tyls;#) andE(Ty|s; ), based on the binned his- FIG. 29. The density of trees as a function of time, plotted
togramP(s, Ty, ; 6) for different values o~ 1. The straight lines in  versus the rescaled time €Ip)t/(6pL?). Upper panel: Plot for
the plots are 1865 for 9~ 1=125(left-hand plo} and 1.8°%"for ¢ 1=125 andL =1000,2000,4000 with an additional plot fér *
#~1=8000. The two dashed lines in the right-hand plot show alter-=500 andL=4000 shown as a dashed line, for comparison of
native exponents 3/’ =0.7 and 1/’ =0.53, which are consistent period and amplitude. Lower panel: Same plot #r'=500 and
with data for small values of or for large values. L =1000,2000,4000.
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ate limit (namelyL —o and#~ *—). One might argue that trivial or not and whether the model posseses any spatio-
another scaling ansatz could lead to a distribution which igemporal correlation which does not vanish on sufficiently
asymptotically scale-free in this limit, for example a multi- large scales.

fractal ansat49] or the one proposed 6], where more

than one scale is assumed to govern the model. For an as-

ymptotically scale-free distribution, the scales have to di- IV. SUMMARY

verge or to vanish in the appropriate limit. It has been sug- ysjng an alternative method for simulating the forest fire

gested already very early20] that more than one odelon large scales, it is possible to make clear statements
characteristic length scale can be found in the forest firgpout the validity of the scaling assumption of this model.

model. _ _ _ _ The two observables investigated in this paper suggest the
However, changing the scaling assumption would entail g,5de| does not develop into a scale invariant state.
new definition of the exponentsr, D, etc., which would ~ The method is based on the Hoshen-Kopelman algorithm

therefore prohibit comparison yvith other results which arg32] and uses a master-slave parallelization scheme to simu-
based on the assumption of simple scalidg). Moreover, |5te the model on very large scales and very large sample
introducing multiple scales would stretch the notion of uni-gjzes The key to the parallelization is to decompose the lat-
versality, especially the universality of the scaling function, sice in strips and to encode the connectivity of these strips in
to its limits. As can be seen in Fig. 16, the shape of thene porder sites. Clusters crossing these strips are then main-
distribution functionis not universali.e., the shape of this (ained by the master node, while clusters within a strip are
function is unique for every single™*, even forL—. This  maintained on the local nodes. There is almost no data ex-
is in direct cont.radlclnon to the concept of universality, Sca|'change apart from the border configuration, which lowers the
ing, and scale invariance. o impact on the network linking the nodes.
. However, it mlght be possible to' ree§tabl|sh simple scal- The resulting distributior?2(s) is, unlike other simula-
ing by introducing another mechanism in the model, as Wagons found in the literature, the distribution all clusters in
done, for example, in the “autoignition forest fire model” e system, rather than just the burnt clusters. The resulting
[51]. If there were, for example, a mechanism parametrizedaistics then allows us to draw clear conclusions as to what
by u, such that extent the model does actually obey the scaling assumption.
_ This turns out not to be case. The violation of scaling is also
n(s; 6,u)=s7G(s/so( 6,u)), (56)  observed in the distribution of the burning time. Conclu-
sively we find that there is no reason to assume that the
Drossel-Schwabl forest fire model develops into a critical
state. This is in line with the conclusion by Grassbefdéf,
who, however, still finds some signs that the forest fire model
will finally show some characteristics of standard percola-
tion.

then simple scaling might be reestablished possibly b
choosing an appropriate=u(6); even the cutofsy, which
was assumed to diverge with !, would then effectively
depend only oré. Currently, there is no hint of what this new
parameten could be.

Lise and PaczusKi8] suggested for a similar problem in
the OFC mode[7] to define an exponent by the slope of
the distribution??(s), imposing the remaining background, ACKNOWLEDGMENTS

F(s,L,671), to be as straight as possible,
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